En mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Le groupe abélien K(A) généralise la construction du groupe des classes d'idéaux d'un anneau A en utilisant les A-modules projectifs. Il a été développé dans les années 1960 et 1970 — au cours desquelles la « conjecture de Serre » sur les modules projectifs est devenue le — et a été relié à beaucoup d'autres problèmes algébriques classiques. De même, le groupe K(A) est une modification du groupe des unités, en utilisant les matrices élémentaires ; il est important en topologie, en particulier lorsque A est un anneau de groupe, parce qu'un groupe quotient, le , contient la , utilisée en théorie du type simple d'homotopie et de la chirurgie. Le groupe K(A) contient aussi d'autres invariants, comme l'. Depuis les années 1980, la K-théorie algébrique a eu de plus en plus d'applications en géométrie algébrique. Par exemple, la cohomologie motivique lui est intimement liée.
K-théorie#HistoireHistoire de la K-théorie
Alexandre Grothendieck a découvert la K-théorie au milieu des années 1950, comme cadre pour établir sa généralisation de grande envergure du théorème de Riemann-Roch. Quelques années plus tard, Michael Atiyah et Friedrich Hirzebruch ont considéré un analogue, la .
À partir de 1960, on a découvert des applications des K-groupes, en particulier en chirurgie des variétés, et de nombreux autres liens avec des problèmes algébriques classiques.
Un peu plus tard, une branche de la théorie des algèbres d'opérateurs fut développée avec profit, donnant naissance à la et à la .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
En mathématiques, la K-théorie est un outil utilisé dans plusieurs disciplines. En topologie algébrique, la sert de théorie de cohomologie. Une variante est utilisée en algèbre sous le nom de K-théorie algébrique. Les premiers résultats de la K-théorie ont été dans le cadre de la topologie algébrique, comme une théorie de cohomologie extraordinaire (elle ne vérifie pas l'axiome de dimension). Par la suite, ces méthodes ont été utilisées dans beaucoup d'autres domaines comme la géométrie algébrique, l'algèbre, la théorie des nombres, la théorie des opérateurs, etc.
En algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
Amer Mathematical Soc2024
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
EPFL2024
,
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...