An audiometer is a machine used for evaluating hearing acuity. They usually consist of an embedded hardware unit connected to a pair of headphones and a test subject feedback button, sometimes controlled by a standard PC. Such systems can also be used with bone vibrators, to test conductive hearing mechanisms.
Audiometers are standard equipment at ENT (ear, nose, throat) clinics and in audiology centers.
An alternative to hardware audiometers are software audiometers, which are available in many different configurations.
Screening PC-based audiometers use a standard computer.
Clinical PC-based audiometers are generally more expensive than software audiometers, but are much more accurate and efficient. They are most commonly used in hospitals, audiology centers and research communities. These audiometers are also used to conduct industrial audiometric testing. Some audiometers even provide a software developer's kit that provides researchers with the capability to create their own diagnostic tests.
An audiometer typically transmits recorded sounds such as pure tones or speech to the headphones of the test subject
at varying frequencies and intensities, and records the subject's responses to produce an audiogram of threshold sensitivity, or speech understanding profile.
Medical grade audiometers are usually an embedded hardware unit controlled from a PC. Software audiometers which run on a PC are also commercially available, but their accuracy and utility for evaluating hearing loss is questionable due to lack of a calibration standard.
The most common type of audiometer generates pure tones, or transmits parts of speech.
Another kind of audiometer is the Bekesy audiometer, in which the subject follows a tone of increasing and decreasing amplitude as the tone is swept through the frequency range by depressing a button when the tone is heard and releasing it when it cannot be heard, crossing back and forth over the threshold of hearing. Bekesy audiometry typically yields lower thresholds and standard deviations than pure tone audiometry.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is auditory science. Sound may be heard through solid, liquid, or gaseous matter. It is one of the traditional five senses. Partial or total inability to hear is called hearing loss.
Audiology (from Latin audīre, "to hear"; and from Greek -λογία, -logia) is a branch of science that studies hearing, balance, and related disorders. Audiologists treat those with hearing loss and proactively prevent related damage. By employing various testing strategies (e.g. behavioral hearing tests, otoacoustic emission measurements, and electrophysiologic tests), audiologists aim to determine whether someone has normal sensitivity to sounds.
Hearing loss is a partial or total inability to hear. Hearing loss may be present at birth or acquired at any time afterwards. Hearing loss may occur in one or both ears. In children, hearing problems can affect the ability to acquire spoken language, and in adults it can create difficulties with social interaction and at work. Hearing loss can be temporary or permanent. Hearing loss related to age usually affects both ears and is due to cochlear hair cell loss. In some people, particularly older people, hearing loss can result in loneliness.
BACKGROUND: Stereotactic radiosurgery (SRS) is one of the main treatment options in the management of small to medium size vestibular schwannomas (VSs), because of high tumor control rate and low cranial nerves morbidity. Series reporting long-term hearing ...
Introduction: As otology enters the field of gene therapy and human studies commence, the question arises whether audiograms - the current gold standard for the evaluation of hearing function - can consistently predict cellular damage within the human inne ...