In physics, phenomenology is the application of theoretical physics to experimental data by making quantitative predictions based upon known theories. It is related to the philosophical notion of the same name in that these predictions describe anticipated behaviors for the phenomena in reality. Phenomenology stands in contrast with experimentation in the scientific method, in which the goal of the experiment is to test a scientific hypothesis instead of making predictions.
Phenomenology is commonly applied to the field of particle physics, where it forms a bridge between the mathematical models of theoretical physics (such as quantum field theories and theories of the structure of space-time) and the results of the high-energy particle experiments. It is sometimes used in other fields such as in condensed matter physics and plasma physics, when there are no existing theories for the observed experimental data.
Within the well-tested and generally accepted Standard Model, phenomenology is the calculating of detailed predictions for experiments, usually at high precision (e.g., including radiative corrections).
Examples include:
Next-to-leading order calculations of particle production rates and distributions.
Monte Carlo simulation studies of physics processes at colliders.
Extraction of parton distribution functions from data.
CKM matrix
The CKM matrix is useful in these predictions:
Application of heavy quark effective field theory to extract CKM matrix elements.
Using lattice QCD to extract quark masses and CKM matrix elements from experiment.
In Physics beyond the Standard Model, phenomenology addresses the experimental consequences of new models: how their new particles could be searched for, how the model parameters could be measured, and how the model could be distinguished from other, competing models.
Phenomenological analyses, in which one studies the experimental consequences of adding the most general set of beyond-the-Standard-Model effects in a given sector of the Standard Model, usually parameterized in terms of anomalous couplings and higher-dimensional operators.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course illustrates some selected chapters of materials physics needed to understand the mechanical and structural properties of solids. This course deals primarily with the physics of dislocation
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.
Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.
In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale or energy scale, while ignoring substructure and degrees of freedom at shorter distances (or, equivalently, at higher energies).
Predictions of the dynamic wake meandering model (DWMM) were compared to flow measurements of a scanning Doppler lidar mounted on the nacelle of a utility-scale wind turbine. We observed that the wake meandering strength of the DWMM agrees better with the ...
2024
In high energy physics, semiconductor-based sensors are widely used in particle tracking applications. These sensors are typically glued on low-mass cooling substrates, which guarantee the correct thermal management and, at the same time, minimise their in ...
EPFL2023
, , ,
Hydrogenated amorphous silicon (a-Si:H) has been proposed as a suitable material for particle detection applications thanks to its property to be deposited over a large area and above a variety of different substrates, including flexible materials. Moreove ...