Résumé
In physics, phenomenology is the application of theoretical physics to experimental data by making quantitative predictions based upon known theories. It is related to the philosophical notion of the same name in that these predictions describe anticipated behaviors for the phenomena in reality. Phenomenology stands in contrast with experimentation in the scientific method, in which the goal of the experiment is to test a scientific hypothesis instead of making predictions. Phenomenology is commonly applied to the field of particle physics, where it forms a bridge between the mathematical models of theoretical physics (such as quantum field theories and theories of the structure of space-time) and the results of the high-energy particle experiments. It is sometimes used in other fields such as in condensed matter physics and plasma physics, when there are no existing theories for the observed experimental data. Within the well-tested and generally accepted Standard Model, phenomenology is the calculating of detailed predictions for experiments, usually at high precision (e.g., including radiative corrections). Examples include: Next-to-leading order calculations of particle production rates and distributions. Monte Carlo simulation studies of physics processes at colliders. Extraction of parton distribution functions from data. CKM matrix The CKM matrix is useful in these predictions: Application of heavy quark effective field theory to extract CKM matrix elements. Using lattice QCD to extract quark masses and CKM matrix elements from experiment. In Physics beyond the Standard Model, phenomenology addresses the experimental consequences of new models: how their new particles could be searched for, how the model parameters could be measured, and how the model could be distinguished from other, competing models. Phenomenological analyses, in which one studies the experimental consequences of adding the most general set of beyond-the-Standard-Model effects in a given sector of the Standard Model, usually parameterized in terms of anomalous couplings and higher-dimensional operators.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (11)
PHYS-307: Physics of materials
This course illustrates some selected chapters of materials physics needed to understand the mechanical and structural properties of solids. This course deals primarily with the physics of dislocation
PHYS-101(g): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-741: Gauge Theories and the Standard Model
The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.
Afficher plus