Concept

Lefschetz pencil

In mathematics, a Lefschetz pencil is a construction in algebraic geometry considered by Solomon Lefschetz, used to analyse the algebraic topology of an algebraic variety V. A pencil is a particular kind of linear system of divisors on V, namely a one-parameter family, parametrised by the projective line. This means that in the case of a complex algebraic variety V, a Lefschetz pencil is something like a fibration over the Riemann sphere; but with two qualifications about singularity. The first point comes up if we assume that V is given as a projective variety, and the divisors on V are hyperplane sections. Suppose given hyperplanes H and H′, spanning the pencil — in other words, H is given by L = 0 and H′ by L′= 0 for linear forms L and L′, and the general hyperplane section is V intersected with Then the intersection J of H with H′ has codimension two. There is a rational mapping which is in fact well-defined only outside the points on the intersection of J with V. To make a well-defined mapping, some blowing up must be applied to V. The second point is that the fibers may themselves 'degenerate' and acquire singular points (where Bertini's lemma applies, the general hyperplane section will be smooth). A Lefschetz pencil restricts the nature of the acquired singularities, so that the topology may be analysed by the vanishing cycle method. The fibres with singularities are required to have a unique quadratic singularity, only. It has been shown that Lefschetz pencils exist in characteristic zero. They apply in ways similar to, but more complicated than, Morse functions on smooth manifolds. It has also been shown that Lefschetz pencils exist in characteristic p for the étale topology. Simon Donaldson has found a role for Lefschetz pencils in symplectic topology, leading to more recent research interest in them.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.