In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible.
Formally, a rational map between two varieties is an equivalence class of pairs in which is a morphism of varieties from a non-empty open set to , and two such pairs and are considered equivalent if and coincide on the intersection (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible). The proof that this defines an equivalence relation relies on the following lemma:
If two morphisms of varieties are equal on some non-empty open set, then they are equal.
is said to be birational if there exists a rational map which is its inverse, where the composition is taken in the above sense.
The importance of rational maps to algebraic geometry is in the connection between such maps and maps between the function fields of and . Even a cursory examination of the definitions reveals a similarity between that of rational map and that of rational function; in fact, a rational function is just a rational map whose range is the projective line. Composition of functions then allows us to "pull back" rational functions along a rational map, so that a single rational map induces a homomorphism of fields . In particular, the following theorem is central: the functor from the of projective varieties with dominant rational maps (over a fixed base field, for example ) to the category of finitely generated field extensions of the base field with reverse inclusion of extensions as morphisms, which associates each variety to its function field and each map to the associated map of function fields, is an equivalence of categories.
There is a rational map sending a ratio . Since the point cannot have an image, this map is only rational, and not a morphism of varieties. More generally, there are rational maps sending for sending an -tuple to an -tuple by forgetting the last coordinates.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
In mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to a projective space of some dimension over K. This means that its function field is isomorphic to the field of all rational functions for some set of indeterminates, where d is the dimension of the variety. Let V be an affine algebraic variety of dimension d defined by a prime ideal I = ⟨f1, ..., fk⟩ in . If V is rational, then there are n + 1 polynomials g0, ..., gn in such that In order words, we have a of the variety.
In algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.
Let k be an algebraically closed field of characteristic p > 0. We give a birational characterization of ordinary abelian varieties over k: a smooth projective variety X is birational to an ordinary abelian variety if and only if kappa(S)(X) = 0 and b(1)(X ...
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...
We further the classification of rational surface singularities. Suppose (S, n, k) is a 3-dimensional strictly Henselian regular local ring of mixed characteristic (0, p > 5). We classify functions f for which S/(f) has an isolated rational singularity at ...