Summary
In finance, economics, and decision theory, hyperbolic absolute risk aversion (HARA) refers to a type of risk aversion that is particularly convenient to model mathematically and to obtain empirical predictions from. It refers specifically to a property of von Neumann–Morgenstern utility functions, which are typically functions of final wealth (or some related variable), and which describe a decision-maker's degree of satisfaction with the outcome for wealth. The final outcome for wealth is affected both by random variables and by decisions. Decision-makers are assumed to make their decisions (such as, for example, portfolio allocations) so as to maximize the expected value of the utility function. Notable special cases of HARA utility functions include the quadratic utility function, the exponential utility function, and the isoelastic utility function. A utility function is said to exhibit hyperbolic absolute risk aversion if and only if the level of risk tolerance —the reciprocal of absolute risk aversion —is a linear function of wealth W: where A(W) is defined as –U "(W) / U '(W). A utility function U(W) has this property, and thus is a HARA utility function, if and only if it has the form with restrictions on wealth and the parameters such that and For a given parametrization, this restriction puts a lower bound on W if and an upper bound on W if . For the limiting case as → 1, L'Hôpital's rule shows that the utility function becomes linear in wealth; and for the limiting case as goes to 0, the utility function becomes logarithmic: . Absolute risk aversion is decreasing if (equivalently T '(W) > 0), which occurs if and only if is finite and less than 1; this is considered the empirically plausible case, since it implies that an investor will put more funds into risky assets the more funds are available to invest. Constant absolute risk aversion occurs as goes to positive or negative infinity, and the particularly implausible case of increasing absolute risk aversion occurs if is greater than one and finite.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.