In finance, economics, and decision theory, hyperbolic absolute risk aversion (HARA) refers to a type of risk aversion that is particularly convenient to model mathematically and to obtain empirical predictions from. It refers specifically to a property of von Neumann–Morgenstern utility functions, which are typically functions of final wealth (or some related variable), and which describe a decision-maker's degree of satisfaction with the outcome for wealth. The final outcome for wealth is affected both by random variables and by decisions. Decision-makers are assumed to make their decisions (such as, for example, portfolio allocations) so as to maximize the expected value of the utility function.
Notable special cases of HARA utility functions include the quadratic utility function, the exponential utility function, and the isoelastic utility function.
A utility function is said to exhibit hyperbolic absolute risk aversion if and only if the level of risk tolerance —the reciprocal of absolute risk aversion —is a linear function of wealth W:
where A(W) is defined as –U "(W) / U '(W). A utility function U(W) has this property, and thus is a HARA utility function, if and only if it has the form
with restrictions on wealth and the parameters such that and For a given parametrization, this restriction puts a lower bound on W if and an upper bound on W if . For the limiting case as → 1, L'Hôpital's rule shows that the utility function becomes linear in wealth; and for the limiting case as goes to 0, the utility function becomes logarithmic: .
Absolute risk aversion is decreasing if (equivalently T '(W) > 0), which occurs if and only if is finite and less than 1; this is considered the empirically plausible case, since it implies that an investor will put more funds into risky assets the more funds are available to invest. Constant absolute risk aversion occurs as goes to positive or negative infinity, and the particularly implausible case of increasing absolute risk aversion occurs if is greater than one and finite.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting
emphasis on theoretical models that help our unde
This course provides students with a working knowledge of macroeconomic models that explicitly incorporate financial markets. The goal is to develop a broad and analytical framework for analyzing the
In economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with. The isoelastic utility function is a special case of hyperbolic absolute risk aversion and at the same time is the only class of utility functions with constant relative risk aversion, which is why it is also called the CRRA utility function.
In economics and finance, exponential utility is a specific form of the utility function, used in some contexts because of its convenience when risk (sometimes referred to as uncertainty) is present, in which case expected utility is maximized. Formally, exponential utility is given by: is a variable that the economic decision-maker prefers more of, such as consumption, and is a constant that represents the degree of risk preference ( for risk aversion, for risk-neutrality, or for risk-seeking).
In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more certain outcome. Risk aversion explains the inclination to agree to a situation with a more predictable, but possibly lower payoff, rather than another situation with a highly unpredictable, but possibly higher payoff.
Explore le contrôle optimal stochastique, mettant l'accent sur la consommation et l'investissement optimaux, le théorème de représentation de Martingale et le théorème de vérification.
Examine l'influence des compétences non cognitives sur les résultats de la vie, les interventions visant à améliorer ces compétences et les considérations éthiques.
This paper introduces the Least Increase aversion (LIA) protocol to investigate the relative impact of factors that may trigger cybersickness. The protocol is inspired by the Subjective Matching methodology (SMT) from which it borrows the incremental const ...
Using data on international equity portfolio allocations by U.S. mutual funds, we estimate a portfolio expression derived from a standard mean-variance portfolio model extended with portfolio frictions. The optimal portfolio depends on the previous month a ...
A multi-agent system consists of a collection of decision-making or learning agents subjected to streaming observations from some real-world phenomenon. The goal of the system is to solve some global learning or optimization problem in a distributed or dec ...