A polymer capacitor, or more accurately a polymer electrolytic capacitor, is an electrolytic capacitor (e-cap) with a solid conductive polymer electrolyte. There are four different types:
Polymer tantalum electrolytic capacitor (Polymer Ta-e-cap)
Polymer aluminium electrolytic capacitor (Polymer Al-e-cap)
Hybrid polymer capacitor (Hybrid polymer Al-e-cap)
Polymer niobium electrolytic capacitors
Polymer Ta-e-caps are available in rectangular surface-mounted device (SMD) chip style. Polymer Al-e-caps and hybrid polymer Al-e-caps are available in rectangular surface-mounted device (SMD) chip style, in cylindrical SMDs (V-chips) style or as radial leaded versions (single-ended).
Polymer electrolytic capacitors are characterized by particularly low internal equivalent series resistances (ESR) and high ripple current ratings. Their electrical parameters have similar temperature dependence, reliability and service life compared to solid tantalum capacitors, but have a much better temperature dependence and a considerably longer service life than aluminium electrolytic capacitors with non-solid electrolytes. In general polymer e-caps have a higher leakage current rating than the other solid or non-solid electrolytic capacitors.
Polymer electrolytic capacitors are also available in a hybrid construction. The hybrid polymer aluminium electrolytic capacitors combine a solid polymer electrolyte with a liquid electrolyte. These types are characterized by low ESR values but have low leakage currents and are insensitive to transients, however they have a temperature-dependent service life similar to non-solid e-caps.
Polymer electrolytic capacitors are mainly used in power supplies of integrated electronic circuits as buffer, bypass and decoupling capacitors, especially in devices with flat or compact design. Thus they compete with MLCC capacitors, but offer higher capacitance values than MLCC, and they display no microphonic effect (such as class 2 and 3 ceramic capacitors).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Explores capacitance, dielectrics, and polarization mechanisms in materials, covering plate capacitors, energy storage, technical capacitors, and polarization in different materials.
Capacitors have many uses in electronic and electrical systems. They are so ubiquitous that it is rare that an electrical product does not include at least one for some purpose. Capacitors allow only AC signals to pass when they are charged blocking DC signals. The main components of filters are capacitors. Capacitors have the ability to connect one circuit segment to another. Capacitors are used by Dynamic Random Access Memory (DRAM) devices to represent binary information as bits.
A tantalum electrolytic capacitor is an electrolytic capacitor, a passive component of electronic circuits. It consists of a pellet of porous tantalum metal as an anode, covered by an insulating oxide layer that forms the dielectric, surrounded by liquid or solid electrolyte as a cathode. Because of its very thin and relatively high permittivity dielectric layer, the tantalum capacitor distinguishes itself from other conventional and electrolytic capacitors in having high capacitance per volume (high volumetric efficiency) and lower weight.
Capacitors are manufactured in many styles, forms, dimensions, and from a large variety of materials. They all contain at least two electrical conductors, called plates, separated by an insulating layer (dielectric). Capacitors are widely used as parts of electrical circuits in many common electrical devices. Capacitors, together with resistors and inductors, belong to the group of passive components in electronic equipment.
Polymer-derived ceramics (PDCs) are a very attractive class of materials due to their excellent properties such as resistance to high temperatures and harsh environments, adjustability of mechanical and functional behavior, and compatibility with a broad r ...
Materials with field-tunable polarization are of broad interest to condensed matter sciences and solid-state device technologies. Here, using hydrogen (H) donor doping, we modify the room temperature metallic phase of a perovskite nickelate NdNiO3 into an ...
Nature Portfolio2024
,
Transient electronics have emerged as a new category of devices that can degrade after their functional lifetime, offering tremendous potential as disposable sensors, actuators, wearables, and implants. Additive manufacturing methods represent a promising ...