A computational model uses computer programs to simulate and study complex systems using an algorithmic or mechanistic approach and is widely used in a diverse range of fields spanning from physics, engineering, chemistry and biology to economics, psychology, cognitive science and computer science.
The system under study is often a complex nonlinear system for which simple, intuitive analytical solutions are not readily available. Rather than deriving a mathematical analytical solution to the problem, experimentation with the model is done by adjusting the parameters of the system in the computer, and studying the differences in the outcome of the experiments. Operation theories of the model can be derived/deduced from these computational experiments.
Examples of common computational models are weather forecasting models, earth simulator models, flight simulator models, molecular protein folding models, Computational Engineering Models (CEM), and neural network models.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A cognitive model is an approximation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a set of equations to software programs that interact with the same tools that humans use to complete tasks (e.g., computer mouse and keyboard). In terms of information processing, cognitive modeling is modeling of human perception, reasoning, memory and action.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course aims at giving students the fundamental knowledge necessary to design, model, and apply Ultra High Performance Fiber Reinforced Concretes (UHPFRC) in structures, in a sustainable way. It p
Motivation is a multifaceted phenomenon that we explore within the framework of decision-making. Through this cognitive process, actions are directed towards specific goals by performing a trade-off between the cost and benefit of an action. The dorsomedia ...
This article describes a field-based analytical model of single-sided linear induction motors (SLIMs) that explicitly considers the following effects altogether: finite motor length, magnetomotive force mmf space harmonics, slot effect, edge effect, and ta ...
2024
, ,
Quadruped animal locomotion emerges from the interactions between the spinal central pattern generator (CPG), sensory feedback, and supraspinal drive signals from the brain. Computational models of CPGs have been widely used for investigating the spinal co ...