Puddling is the process of converting pig iron to bar (wrought) iron in a coal fired reverberatory furnace. It was developed in England during the 1780s. The molten pig iron was stirred in a reverberatory furnace, in an oxidizing environment to burn the carbon, resulting in wrought iron. It was one of the most important processes for making the first appreciable volumes of valuable and useful bar iron (malleable wrought iron) without the use of charcoal. Eventually, the furnace would be used to make small quantities of specialty steels.
Though it was not the first process to produce bar iron without charcoal, puddling was by far the most successful, and replaced the earlier potting and stamping processes, as well as the much older charcoal finery and bloomery processes. This enabled a great expansion of iron production to take place in Great Britain, and shortly afterwards, in North America. That expansion constitutes the beginnings of the Industrial Revolution so far as the iron industry is concerned. Most 19th century applications of wrought iron, including the Eiffel Tower, bridges, and the original framework of the Statue of Liberty, used puddled iron.
Modern puddling was one of several processes developed in the second half of the 18th century in Great Britain for producing bar iron from pig iron without the use of charcoal. It gradually replaced the earlier charcoal-fueled process, conducted in a finery forge.
Pig iron contains much free carbon and is brittle. Before it can be used, and before it can be worked by a blacksmith, it must be converted to a more malleable form as bar iron, the early stage of wrought iron.
Abraham Darby's successful use of coke for his blast furnace at Coalbrookdale in 1709 reduced the price of iron, but this coke-fuelled pig iron was not initially accepted as it could not be converted to bar iron by the existing methods. Sulfur impurities from the coke made it 'red short', or brittle when heated, and so the finery process was unworkable for it.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A reverberatory furnace is a metallurgical or process furnace that isolates the material being processed from contact with the fuel, but not from contact with combustion gases. The term reverberation is used here in a generic sense of rebounding or reflecting, not in the acoustic sense of echoing. Chemistry determines the optimum relationship between the fuel and the material, among other variables.
A trip hammer, also known as a tilt hammer or helve hammer, is a massive powered hammer. Traditional uses of trip hammers include pounding, decorticating and polishing of grain in agriculture. In mining, trip hammers were used for crushing metal ores into small pieces, although a stamp mill was more usual for this. In finery forges they were used for drawing out blooms made from wrought iron into more workable bar iron. They were also used for fabricating various articles of wrought iron, latten (an early form of brass), steel and other metals.
Potting and stamping is a modern name for one of the 18th-century processes for refining pig iron without the use of charcoal. The process was devised by Charles Wood of Lowmill, Egremont in Cumberland and his brother John Wood of Wednesbury and patented by them in 1761 and 1763. The process was improved by John Wright and Joseph Jesson of West Bromwich, who also obtained a patent. The process involved the melting of pig iron in an oxidising atmosphere. The metal was then allowed to cool, broken up by stamping, and washed.
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Explores the conversion of raw iron into steel using the oxygen converter process, refining steel in a ladle furnace, electric arc furnace steelmaking, and the environmental impact of steelmaking.
Explores the aluminium-copper system, extraction processes, energy aspects, and 3D printing, including the Al-Cu system, phase diagrams, and the law of the lever.
In this study, the synergistic and antagonistic effects of Fe species and coexisting natural organic matter (NOM) on the efficacy of solar light disinfection of water are investigated. Different initial iron species (Fe2+/Fe3+) and naturalorganic matter ty ...
Amsterdam2023
, , ,
The relationship between composition and plasmonic properties in noble metal nanoalloys is still largely unexplored. Yet, nanoalloys of noble metals, such as gold, with transition elements, such as iron, have unique properties and a number of potential app ...
Structural steels have long been used in construction applications. Their mechanical properties and behavior under seismic loading or under fatigue design are of considerable interest for researchers and engineers. Although extensive studies have been cond ...