Summary
In computing, serialization (or serialisation) is the process of translating a data structure or object state into a format that can be stored (e.g. in secondary storage devices, data buffers in primary storage devices) or transmitted (e.g. data streams over computer networks) and reconstructed later (possibly in a different computer environment). When the resulting series of bits is reread according to the serialization format, it can be used to create a semantically identical clone of the original object. For many complex objects, such as those that make extensive use of references, this process is not straightforward. Serialization of object-oriented objects does not include any of their associated methods with which they were previously linked. This process of serializing an object is also called marshalling an object in some situations. The opposite operation, extracting a data structure from a series of bytes, is deserialization, (also called unserialization or unmarshalling). Serialization application examples includes methods such as: serializing data for transfer across wires and networks (messaging). storing data (in databases, on hard disk drives). remote procedure calls, e.g., as in SOAP. distributing objects, especially in component-based software engineering such as COM, CORBA, etc. detecting changes in time-varying data. For some of these features to be useful, architecture independence must be maintained. For example, for maximal use of distribution, a computer running on a different hardware architecture should be able to reliably reconstruct a serialized data stream, regardless of endianness. This means that the simpler and faster procedure of directly copying the memory layout of the data structure cannot work reliably for all architectures. Serializing the data structure in an architecture-independent format means preventing the problems of byte ordering, memory layout, or simply different ways of representing data structures in different programming languages.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.