Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms (biofouling) or a non-living substance (inorganic or organic). Fouling is usually distinguished from other surface-growth phenomena in that it occurs on a surface of a component, system, or plant performing a defined and useful function and that the fouling process impedes or interferes with this function.
Other terms used in the literature to describe fouling include deposit formation, encrustation, crudding, deposition, scaling, scale formation, slagging, and sludge formation. The last six terms have a more narrow meaning than fouling within the scope of the fouling science and technology, and they also have meanings outside of this scope; therefore, they should be used with caution.
Fouling phenomena are common and diverse, ranging from fouling of ship hulls, natural surfaces in the marine environment (marine fouling), fouling of heat-transfer components through ingredients contained in cooling water or gases, and even the development of plaque or calculus on teeth or deposits on solar panels on Mars, among other examples.
This article is primarily devoted to the fouling of industrial heat exchangers, although the same theory is generally applicable to other varieties of fouling. In cooling technology and other technical fields, a distinction is made between macro fouling and micro fouling. Of the two, micro fouling is the one that is usually more difficult to prevent and therefore more important.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
Biofouling or biological fouling is the accumulation of microorganisms, plants, algae, or small animals where it is not wanted on surfaces such as ship and submarine hulls, devices such as water inlets, pipework, grates, ponds, and rivers that cause degradation to the primary purpose of that item. Such accumulation is referred to as epibiosis when the host surface is another organism and the relationship is not parasitic.
Reverse osmosis (RO) is a water purification process that uses a semi-permeable membrane to separate water molecules from other substances. RO applies pressure to overcome osmotic pressure that favors even distributions. RO can remove dissolved or suspended chemical species as well as biological substances (principally bacteria), and is used in industrial processes and the production of potable water. RO retains the solute on the pressurized side of the membrane and the purified solvent passes to the other side.
Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.
Explores membrane properties, advantages, limitations, fouling, filtration processes, micropollutant removal, and process combinations in water treatment.
Oxidative treatment of seawater in coastal and shipboard installations is applied to control biofouling and/or minimize the input of noxious or invasive species into the marine environment. This treatment allows a safe and efficient operation of industrial ...
Patterned membranes prepared via spray-modified non -solvent induced phase separation (s-NIPS) have successfully shown enhanced fluxes and better fouling control, thanks to the increased surface area and high fluid shear at the membrane/feed interface. The ...
Elsevier2024
, ,
The effectiveness of submerged synthetic aquatic vegetation on removal of colloids from flowing water was investigated to explore retention of particulate nonpoint source pollutants in aquatic systems. In colloid transport experiments, the deposition rate ...