Concept

4000-series integrated circuits

Summary
The 4000 series is a CMOS logic family of integrated circuits (ICs) first introduced in 1968 by RCA. It was slowly migrated into the 4000B buffered series after about 1975. It had a much wider supply voltage range than any contemporary logic family (3V to 18V recommended range for "B" series). Almost all IC manufacturers active during this initial era fabricated models for this series. Its naming convention is still in use today. The 4000 series was introduced as the CD4000 COS/MOS series in 1968 by RCA as a lower power and more versatile alternative to the 7400 series of transistor-transistor logic (TTL) chips. The logic functions were implemented with the newly introduced Complementary Metal–Oxide–Semiconductor (CMOS) technology. While initially marketed with "COS/MOS" labeling by RCA (which stood for Complementary Symmetry Metal-Oxide Semiconductor), the shorter CMOS terminology emerged as the industry preference to refer to the technology. The first chips in the series were designed by a group led by Albert Medwin. Wide adoption was initially hindered by the comparatively lower speeds of the designs compared to TTL based designs. Speed limitations were eventually overcome with newer fabrication methods (such as self aligned gates of polysilicon instead of metal). These CMOS variants performed on par with contemporary TTL. The series was extended in the late 1970s and 1980s with new models that were given 45xx and 45xxx designations, but are usually still regarded by engineers as part of the 4000 series. In the 1990s, some manufacturers (e.g. Texas Instruments) ported the 4000 series to newer HCMOS based designs to provide greater speeds. The 4000 series facilitates simpler circuit design through relatively low power consumption, a wide range of supply voltages, and vastly increased load-driving capability (fanout) compared to TTL. This makes the series ideal for use in prototyping LSI designs. While TTL ICs are similarly modular, these usually lack the symmetrical drive strength of CMOS and may therefore require more consideration of the loads applied on its outputs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.