In telecommunications, an interference is that which modifies a signal in a disruptive manner, as it travels along a communication channel between its source and receiver. The term is often used to refer to the addition of unwanted signals to a useful signal. Common examples include:
Electromagnetic interference (EMI)
Co-channel interference (CCI), also known as crosstalk
Adjacent-channel interference (ACI)
Intersymbol interference (ISI)
Inter-carrier interference (ICI), caused by doppler shift in OFDM modulation (multitone modulation).
Common-mode interference (CMI)
Conducted interference
Noise is a form of interference but not all interference is noise.
Radio resource management aims at reducing and controlling the co-channel and adjacent-channel interference.
A solution to interference problems in wireless communication networks is interference alignment, which was crystallized by Syed Ali Jafar at the University of California, Irvine. A specialized application was previously studied by Yitzhak Birk and Tomer Kol for an index coding problem in 1998. For interference management in wireless communication, interference alignment was originally introduced by Mohammad Ali Maddah-Ali, Abolfazl S. Motahari, and Amir Keyvan Khandani, at the University of Waterloo, for communication over wireless X channels. Interference alignment was eventually established as a general principle by Jafar and Viveck R. Cadambe in 2008, when they introduced "a mechanism to align an arbitrarily large number of interferers, leading to the surprising conclusion that wireless networks are not essentially interference limited." This led to the adoption of interference alignment in the design of wireless networks.
Jafar explained:
My research group crystallized the concept of interference alignment and showed that through interference alignment, it is possible for everyone to access half of the total bandwidth free from interference. Initially this result was shown under a number of idealized assumptions that are typical in theoretical studies.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In electronics, noise is an unwanted disturbance in an electrical signal. Noise generated by electronic devices varies greatly as it is produced by several different effects. In particular, noise is inherent in physics and central to thermodynamics. Any conductor with electrical resistance will generate thermal noise inherently. The final elimination of thermal noise in electronics can only be achieved cryogenically, and even then quantum noise would remain inherent. Electronic noise is a common component of noise in signal processing.
Telecommunication, often used in its plural form, is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that feasible with the human voice, but with a similar scale of expediency; thus, slow systems (such as postal mail) are excluded from the field.
In digital transmission, the number of bit errors is the numbers of received bits of a data stream over a communication channel that have been altered due to noise, interference, distortion or bit synchronization errors. The bit error rate (BER) is the number of bit errors per unit time. The bit error ratio (also BER) is the number of bit errors divided by the total number of transferred bits during a studied time interval. Bit error ratio is a unitless performance measure, often expressed as a percentage.
Explores noise interference sources in electronic systems, covering thermal, magnetic, and electromagnetic fields, ground loops, and common resistance paths.
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about c
It has been shown that the coherent detection of long range (LoRa) signals only provides marginal gains of around 0.7 dB on the additive white Gaussian noise (AWGN) channel. However, ALOHA-based massive Internet-of-Things systems, including LoRa, often ope ...
In this article, we propose and implement a novel technique to locate electromagnetic interference (EMI) sources using the concept of time-reversal (TR) cavity. We show in an intuitive manner that reflections from the surfaces of a cavity can emulate an in ...
Fast and accurate transmission line outage detection can help the central control unit to respond rapidly to better maintain the security and reliability of power systems. It is especially critical in the situation of multiple line outages which is more li ...