Concept

Risch algorithm

Summary
In symbolic computation, the Risch algorithm is a method of indefinite integration used in some computer algebra systems to find antiderivatives. It is named after the American mathematician Robert Henry Risch, a specialist in computer algebra who developed it in 1968. The algorithm transforms the problem of integration into a problem in algebra. It is based on the form of the function being integrated and on methods for integrating rational functions, radicals, logarithms, and exponential functions. Risch called it a decision procedure, because it is a method for deciding whether a function has an elementary function as an indefinite integral, and if it does, for determining that indefinite integral. However, the algorithm does not always succeed in identifying whether or not the antiderivative of a given function in fact can be expressed in terms of elementary functions. The complete description of the Risch algorithm takes over 100 pages. The Risch–Norman algorithm is a simpler, faster, but less powerful variant that was developed in 1976 by Arthur Norman. Some significant progress has been made in computing the logarithmic part of a mixed transcendental-algebraic integral by Brian L. Miller. The Risch algorithm is used to integrate elementary functions. These are functions obtained by composing exponentials, logarithms, radicals, trigonometric functions, and the four arithmetic operations (+ − × ÷). Laplace solved this problem for the case of rational functions, as he showed that the indefinite integral of a rational function is a rational function and a finite number of constant multiples of logarithms of rational functions . The algorithm suggested by Laplace is usually described in calculus textbooks; as a computer program, it was finally implemented in the 1960s. Liouville formulated the problem that is solved by the Risch algorithm. Liouville proved by analytical means that if there is an elementary solution g to the equation g′ = f then there exist constants αi and functions ui and v in the field generated by f such that the solution is of the form Risch developed a method that allows one to consider only a finite set of functions of Liouville's form.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.