In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals. Their respective names stem from their integral definitions, which are defined similarly to the gamma function but with different or "incomplete" integral limits. The gamma function is defined as an integral from zero to infinity. This contrasts with the lower incomplete gamma function, which is defined as an integral from zero to a variable upper limit. Similarly, the upper incomplete gamma function is defined as an integral from a variable lower limit to infinity. The upper incomplete gamma function is defined as: whereas the lower incomplete gamma function is defined as: In both cases s is a complex parameter, such that the real part of s is positive. By integration by parts we find the recurrence relations and Since the ordinary gamma function is defined as we have and The lower incomplete gamma and the upper incomplete gamma function, as defined above for real positive s and x, can be developed into holomorphic functions, with respect both to x and s, defined for almost all combinations of complex x and s. Complex analysis shows how properties of the real incomplete gamma functions extend to their holomorphic counterparts. Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all complex s and x. By a theorem of Weierstraß, the limiting function, sometimes denoted as , is entire with respect to both z (for fixed s) and s (for fixed z), and, thus, holomorphic on C × C by Hartog's theorem. Hence, the following decomposition extends the real lower incomplete gamma function as a holomorphic function, both jointly and separately in z and s.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (16)
Intégrale de Fresnel
L'intégrale de Fresnel est une intégrale impropre introduite par le physicien français Augustin Fresnel. Ces égalités sont équivalentes à l'expression de l'intégrale de Fresnel complexe (par identification des parties réelle et imaginaire dans un sens et par combinaison linéaire dans l'autre) : Le calcul explicite montrera que l'intégrale de Fresnel converge, mais on peut s'en assurer plus simplement : par le changement de variable s = t, la convergence de équivaut à celle de ; d'après la règle d'Abel, pour tout λ > 0, l'intégrale converge.
Développement asymptotique
En mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Exponentielle intégrale
En mathématiques, la fonction exponentielle intégrale, habituellement notée Ei, est définie par : Comme l'intégrale de la fonction inverse () diverge en 0, cette définition doit être comprise, si x > 0, comme une valeur principale de Cauchy. vignette|Représentation graphique de la fonction exponentielle intégrale. La fonction Ei est liée à la fonction li (logarithme intégral) par : vignette|upright=1.5|Représentation graphique des fonctions E (en haut) et Ei (en bas), pour x > 0.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.