Antibiotic prophylaxis refers to, for humans, the prevention of infection complications using antimicrobial therapy (most commonly antibiotics). Antibiotic prophylaxis in domestic animal feed mixes has been employed in America since at least 1970.
Antibiotic prophylaxis is most commonly used prior to dental surgery or medical surgery, however, may be used in other cases, such as prior to sexual intercourse for patients who suffer from recurrent urinary tract infections.
Even when sterile techniques are adhered to, surgical procedures can introduce bacteria and other microbes in the blood (causing bacteremia), which can colonize and infect different parts of the body. An estimated 5 to 10 percent of hospitalized patients undergoing otolaryngology ("head and neck") surgery acquire a nosocomial ("hospital") infection, which adds a substantial cost and an average of 4 extra days to the hospital stay.
Antibiotics can be effective in reducing the occurrence of such infections. Patients should be selected for prophylaxis if the medical condition or the surgical procedure is associated with a considerable risk of infection or if a postoperative infection would pose a serious hazard to the patient's recovery and well-being.
Antibiotic prophylaxis is also commonly used to prevent respiratory tract infections in antibody deficient patients.
Local wound infections (superficial or deep-sided), urinary tract infections (caused by a bladder catheter inserted for surgery), and pneumonia (due to impaired breathing/coughing, caused by sedation and analgesics during the first few hours of recovery) may endanger the health of patients after surgery. Visibly worse are postoperative bacterial infections at the site of implanted foreign bodies (sutures, osteosynthetic material, joint replacements, pacemaker implants, etc.) Often, the outcome of the procedure may be put into question and the life of the patient may even be put at risk.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores methods of microbial control, including heat, radiation, filtration, pasteurization, and antibiotics, as well as the challenges of antimicrobial resistance.
Delves into enzyme inhibition, reversible and irreversible binding, and covalent drugs, exploring drug modes of action and their impact on drug efficacy.
Delves into the molecular basis of genetic diseases, discussing specific examples like Phenylketonuria and Haemophilia A, and the development of small molecule drugs for genetic disorders.
Ampicillin is an antibiotic belonging to the aminopenicillin class of the penicillin family. The drug is used to prevent and treat a number of bacterial infections, such as respiratory tract infections, urinary tract infections, meningitis, salmonellosis, and endocarditis. It may also be used to prevent group B streptococcal infection in newborns. It is used by mouth, by injection into a muscle, or intravenously. Common side effects include rash, nausea, and diarrhea. It should not be used in people who are allergic to penicillin.
A hospital-acquired infection, also known as a nosocomial infection (from the Greek nosokomeion, meaning "hospital"), is an infection that is acquired in a hospital or other healthcare facility. To emphasize both hospital and nonhospital settings, it is sometimes instead called a healthcare-associated infection. Such an infection can be acquired in hospital, nursing home, rehabilitation facility, outpatient clinic, diagnostic laboratory or other clinical settings.
By acquiring or evolving resistance to one antibiotic, bacteria can become resistant to a second one, due to shared underlying mechanisms. This is called cross-resistance (XR) and further limits therapeutic choices. The opposite scenario, in which initial ...
2024
, , ,
The present study aimed to fill the knowledge gap between the implications of intracellular and extracellular antibiotic resistance mechanisms may inflict on the inactivation pathways of the photo-Fenton process under mild conditions. It was thus designed ...
London2024
, , , , , ,
The need for sustainable and reliable decontamination methods is driven by concerns regarding antibiotic resistance, as well as environmental and cost -efficiency challenges associated with traditional methods. Plasmaactivated water (PAW) holds significant ...