In mathematical physics, the Wightman axioms (also called Gårding–Wightman axioms), named after Arthur Wightman, are an attempt at a mathematically rigorous formulation of quantum field theory. Arthur Wightman formulated the axioms in the early 1950s, but they were first published only in 1964 after Haag–Ruelle scattering theory affirmed their significance.
The axioms exist in the context of constructive quantum field theory and are meant to provide a basis for rigorous treatment of quantum fields and strict foundation for the perturbative methods used. One of the Millennium Problems is to realize the Wightman axioms in the case of Yang–Mills fields.
One basic idea of the Wightman axioms is that there is a Hilbert space, upon which the Poincaré group acts unitarily. In this way, the concepts of energy, momentum, angular momentum and center of mass (corresponding to boosts) are implemented.
There is also a stability assumption, which restricts the spectrum of the four-momentum to the positive light cone (and its boundary). However, this isn't enough to implement locality. For that, the Wightman axioms have position-dependent operators called quantum fields, which form covariant representations of the Poincaré group.
Since quantum field theory suffers from ultraviolet problems, the value of a field at a point is not well-defined. To get around this, the Wightman axioms introduce the idea of smearing over a test function to tame the UV divergences, which arise even in a free field theory. Because the axioms are dealing with unbounded operators, the domains of the operators have to be specified.
The Wightman axioms restrict the causal structure of the theory by imposing either commutativity or anticommutativity between spacelike separated fields.
They also postulate the existence of a Poincaré-invariant state called the vacuum and demand it to be unique. Moreover, the axioms assume that the vacuum is "cyclic", i.e., that the set of all vectors obtainable by evaluating at the vacuum-state elements of the polynomial algebra generated by the smeared field operators is a dense subset of the whole Hilbert space.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Axiomatic quantum field theory is a mathematical discipline which aims to describe quantum field theory in terms of rigorous axioms. It is strongly associated with functional analysis and operator algebras, but has also been studied in recent years from a more geometric and functorial perspective. There are two main challenges in this discipline. First, one must propose a set of axioms which describe the general properties of any mathematical object that deserves to be called a "quantum field theory".
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points.
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.
Explores the Wigner theorem, translation symmetry, eigenstates, and wave functions in quantum physics.
Explores scaling of correlation functions, operators, dimensions, beta function, RG possibilities, and UV complete QFTs.
Explores scaling and renormalization in statistical mechanics, emphasizing critical points and invariant properties.
, , ,
Hyperbolic lattices are a new type of synthetic materials based on regular tessellations in non-Euclidean spaces with constant negative curvature. While so far, there has been several theoretical investigations of hyperbolic topological media, experimental ...
2024
Quantum Field Theories are a central object of interest of modern physics, describing fundamental interactions of matter. However, current methods give limited insight into strongly coupling theories. S-matrix bootstrap program, described in this thesis, a ...
We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Kallen-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we ...