**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Spontaneous symmetry breaking

Summary

Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.
Overview
By definition, spontaneous symmetry breaking requires the existence of physical laws (e.g. quantum mechanics) which are invariant under a symmetry transformation (such as translation or rotation), so that any pair of outcomes differing only by that transformation have the same probability distribution. For example if measurements of an observable at any two different positions have the same probability distribution, the observable has translational symmet

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (22)

Related publications (100)

Loading

Loading

Loading

Related courses (21)

PHYS-416: Particle physics II

Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the Standard Model.

PHYS-316: Statistical physics II

Introduction à la théorie des transitions de phase

CH-417: Optical methods in chemistry

Introduction and application of photon based tools for chemical sciences: from basic concepts to optical and x-ray lasers

Related concepts (74)

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to cons

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and cla

In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups).
The term gauge refers t

Related lectures (40)

Related units (14)

In magnetic confinement devices, the inhomogeneity of the confining magnetic field along a magnetic field line generates the trapping of particles (with low ratio of parallel to perpendicular velocities) within local magnetic wells. One of the consequences of the trapped particles is the generation of a current, known as the bootstrap current (BC), whose direction depends on the nature of the magnetic trapping. The BC provides an extra contribution to the poloidal component of the confining magnetic field. The variation of the poloidal component produces the alteration of the winding of the magnetic field lines around the flux surfaces quantified by the rotational transform ι. When ι reaches low rational values, it can trigger the generation of ideal MHD instabilities. Therefore, the BC may be responsible for the destabilisation of the configuration. This thesis is divided into two parts. In the first part, we present a self-consistent method to calculate the BC and assess its effect on equilibrium and stability in general 3D configurations. This procedure is applied to two reactor-size prototypes (both with plasma volumes ∼ 1000m3): a quasi-axisymmetric (QAS) system and a quasi helically symmetric (QHS) system with magnetic structures that develop BC in opposite directions. The BC increases with the plasma pressure, therefore its relevance is enhanced when dealing with reactor-level scenarios. The behaviour of both prototypes at reactor level values of β ≡ (kinetic plasma pressure)/(magnetic pressure) is assessed, as well as its alteration of the equilibrium and stability. In the QAS prototype, BC-consistent equilibria have been computed up to β = 6.7% and the configuration is shown to be stable up to β = 6.4%. Convergence of self-consistent BC calculations for the QHS case is achieved only up to β = 3.5%, but the configuration is unstable for β ≥ 0.6%. The relevance of symmetry breaking modes of the Fourier expansion of the confining magnetic field on the generation of BC is studied for each prototype. This proves the close relationship between magnetic structure and BC. Having established the potentially dangerous implication of the BC, principally, in reactor prototypes, a method to compensate its harmful effects is proposed in the second part of the thesis. It consists of the modelling of the current driven by externally launched ECWs within the plasma to compensate the effects of the BC. This method is flexible enough to allow the identification of the appropriate scenarios in which to generate the required CD depending on the nature of the confining magnetic field and the specific plasma parameters of the configuration. Both the BC and the CD calculations are included in a self-consistent scheme which leads to the computation of a stable BC+CD-consistent MHD equilibrium. This procedure is applied in this thesis to simulate the required CD to stabilise the QAS and QHS prototypes introduced in the first part. The estimation of the input power required and the effect of the driven current on the final equilibrium of the system is performed for several relevant scenarios and wave polarisations providing various options of stabilising driven currents. Several scenarios have been devised for each prototype in order to drive current at the appropriate location and with the desired direction. Different polarisations and launching conditions have been employed to this purpose. In particular, a HFS launched X2 ECW with an input power of 1.5MW has been shown to drive sufficient current to maintain the rotational transform below the critical value 2/3 at β = 6.4% for the QAS reactor. Correspondingly, in the QHS reactor, an X3-mode ECW of 100KW was sufficient to drive the current required to push the rotational transform below unity near the magnetic axis at β = 3%. Thus, stabilisation of BC-driven instabilities with externally launched ECWs has been achieved for both contrasting configurations. The method proposed in this thesis allows also the utilisation of EBW in the generation of CD. The possible advantages of EBCD for compensation studies are described as well as their possible application to the two prototypes under consideration. The BC+CD procedure is particularly interesting to investigate new magnetic geometries as potential candidates for fusion reactors. With this numerical tool, it is possible to assess the implications of their consistent BC when operating at reactor level. It also allows to quantify how much power would be required to maintain the system MHD stable in these circumstances. Nevertheless, this method is flexible enough to be applicable to any configuration.

The main topics discussed in this thesis are supersymmetric low-energy effective theories and metastability conditions in generic non-renormalizable models with global and local supersymmetry. In the first part we discuss the conditions under which the low-energy expansion in space-time derivatives preserves supersymmetry implying that heavy multiplets can be more efficiently integrated out directly at the superfield level. These conditions translate into the requirements that also fermions and auxiliary fields should be small compared to the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We finally give a simple prescription to integrate out heavy chiral and vector superfields consisting respectively in imposing stationarity of the superpotential and of the Kähler potential; the procedure holds in the same form both for global and local supersymmetry. In the second part we study general criteria for the existence of metastable vacua which break global supersymmetry in models with local gauge symmetries. In particular we present a strategy to define an absolute upper bound on the mass of the lightest scalar field which depends on the geometrical properties of the Kähler target manifold. This bound can be saturated by properly tuning the superpotential and its positivity therefore represents a necessary and sufficient condition for the existence of metastable vacua. It is derived by looking at the subspace of all those directions in field space for which an arbitrary supersymmetric mass term is not allowed and scalar masses are controlled by supersymmetry-breaking splitting effects. This subspace includes not only the direction of supersymmetry breaking, but also the directions of gauge symmetry breaking and the lightest scalar is in general a linear combination of fields spanning all these directions. Our purpose is to show that the largest value for the lightest mass is in general achieved when the lightest scalar is a combination of the Goldstone and the Goldstino partners. We conclude by computing the effects induced by the integration of heavy multiplets on the light masses. In particular we focus on the sGoldstino partners and we show that heavy chiral multiplets induce a negative level-repulsion effect that tends to compromise vacuum stability, whereas heavy vector multiplets in general induce a positive-definite contribution. Our results find application in the context of string-inspired supergravity models, where metastability conditions can be used to discriminate among different compactification scenarios and supersymmetric effective theories can be used to face the problem of moduli stabilization.

This thesis presents a general discussion of the Composite Higgs scenario of Electro-Weak Symmetry Breaking (EWSB). We start by reviewing the Standard Model of Electro-Weak interaction, discussing its experimental tests and conceptual pitfalls. Emphasis is given to the effective field theory point of view. In particular, the inherent tension related to the stability of the Electro-Weak scale motivates us to explore the possibility of having the Higgs field emerging as a Nambu-Goldstone boson from a new strongly coupled sector. Our construction is to a large extent inspired by the picture of the long range dynamics of QCD. The main ingredients are the symmetry of the UV theory, the pattern of its spontaneous breakdown and the sources of explicit breaking. In QCD, the latter are provided by the light quark masses and by the electromagnetic interaction. In Composite Higgs models, the most relevant symmetry breaking couplings are those related to the generation of the third family quark Yukawas through partial compositeness. They generate a potential for the Higgs and thus trigger EWSB. The constraints on the scenario are exposed, with a particular emphasis on the composite Two Higgs Doublet Model (THDM). While a residual SO(4) symmetry is sufficient to ensure a realistic phenomenology in presence of a single composite Higgs doublet, an extended Higgs sector needs more symmetries. For two doublets we show how either CP or a ℤ2 symmetry can play this role and construct a model for each realisation relying on the SO(6)/SO(4) × SO(2) coset. Finally, we discuss the phenomenology of this scenario. In particular, we present de differences between an elementary and a composite THDM. We also conclude that composite fermions associated to the third family quarks seem to be the most promising experimental handles for these models. We discuss their discovery range at the LHC, and the possibility of measuring the structure of their couplings. This knowledge would allow important insight into the strong dynamics.