Concept

Oppermann's conjecture

Oppermann's conjecture is an unsolved problem in mathematics on the distribution of prime numbers. It is closely related to but stronger than Legendre's conjecture, Andrica's conjecture, and Brocard's conjecture. It is named after Danish mathematician Ludvig Oppermann, who announced it in an unpublished lecture in March 1877. The conjecture states that, for every integer x > 1, there is at least one prime number between x(x − 1) and x2, and at least another prime between x2 and x(x + 1). It can also be phrased equivalently as stating that the prime-counting function must take unequal values at the endpoints of each range. That is: π(x2 − x) < π(x2) < π(x2 + x) for x > 1 with π(x) being the number of prime numbers less than or equal to x. The end points of these two ranges are a square between two pronic numbers, with each of the pronic numbers being twice a pair triangular number. The sum of the pair of triangular numbers is the square. If the conjecture is true, then the gap size would be on the order of This also means there would be at least two primes between x2 and (x + 1)2 (one in the range from x2 to x(x + 1) and the second in the range from x(x + 1) to (x + 1)2), strengthening Legendre's conjecture that there is at least one prime in this range. Because there is at least one non-prime between any two odd primes it would also imply Brocard's conjecture that there are at least four primes between the squares of consecutive odd primes. Additionally, it would imply that the largest possible gaps between two consecutive prime numbers could be at most proportional to twice the square root of the numbers, as Andrica's conjecture states. The conjecture also implies that at least one prime can be found in every quarter revolution of the Ulam spiral. Even for small values of x, the numbers of primes in the ranges given by the conjecture are much larger than 1, providing strong evidence that the conjecture is true.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.