**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Prime number theorem

Summary

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).
The first such distribution found is π(N) ~ N/log(N), where π(N) is the prime-counting function (the number of primes less than or equal to N) and log(N) is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to 1 / log(N). Consequently, a random integer with at most 2n digits (for large enough n) is about half as likely to be prime as a random integer with at most n digits. For example, among the positive integers of at most 1000 digits, about one in 2300 is prime (log(101000) ≈ 2302.6), whereas among positive integers of at most 2000 digits, about one in 4600 is prime (log(102000) ≈ 4605.2). In other words, the average gap between consecutive prime numbers among the first N integers is roughly log(N).
Let π(x) be the prime-counting function defined to be the number of primes less than or equal to x, for any real number x. For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / log x is a good approximation to π(x) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π(x) and x / log x as x increases without bound is 1:
known as the asymptotic law of distribution of prime numbers. Using asymptotic notation this result can be restated as
This notation (and the theorem) does not say anything about the limit of the difference of the two functions as x increases without bound.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (6)

Loading

Loading

Loading

Related people

No results

Related units

No results

Related concepts (65)

Riemann hypothesis

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.

Prime number theorem

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).

Analytic number theory

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem).

Related courses (13)

MATH-417: Topics in number theory

This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th

COM-401: Cryptography and security

This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how

MATH-313: Introduction to analytic number theory

The aim of this course is to present the basic techniques of analytic number theory.

Related lectures (127)

Prime Number Theorem

Covers the proof of Von Mangoldt's formula and the Prime Number Theorem using Zeta functions and pole analysis.

Prime Number Theorem

Explores the proof of the Prime Number Theorem and its implications in number theory.

Abel Summation and Prime Number Theory

Introduces the Abel summation formula and its application in establishing various equivalent formulations of the Prime Number Theory.

Related MOOCs

No results

Let k be a field of characteristic p, where p is a prime number, let pp_k(G) be the Grothendieck group of p-permutation kG-modules, where G is a finite group, and let Cpp_k(G) be pp_k(G) tensored with

Let k be an algebraically closed field of characteristic p, where p is a prime number or 0. Let G be a finite group and ppk(G) be the Grothendieck group of p-permutation kG-modules. If we tensor it wi

, ,

2010