In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an operator is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect.
This concept is important for working with correlation functions in quantum field theory. It is also important in spontaneous symmetry breaking. Examples are:
The Higgs field has a vacuum expectation value of 246 GeV. This nonzero value underlies the Higgs mechanism of the Standard Model. This value is given by , where MW is the mass of the W Boson, the reduced Fermi constant, and g the weak isospin coupling, in natural units. It is also near the limit of the most massive nuclei, at v = 264.3 Da.
The chiral condensate in quantum chromodynamics, about a factor of a thousand smaller than the above, gives a large effective mass to quarks, and distinguishes between phases of quark matter. This underlies the bulk of the mass of most hadrons.
The gluon condensate in quantum chromodynamics may also be partly responsible for masses of hadrons.
The observed Lorentz invariance of space-time allows only the formation of condensates which are Lorentz scalars and have vanishing charge. Thus fermion condensates must be of the form , where ψ is the fermion field. Similarly a tensor field, Gμν, can only have a scalar expectation value such as .
In some vacua of string theory, however, non-scalar condensates are found. If these describe our universe, then Lorentz symmetry violation may be observable.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.
In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The term zero-point field is sometimes used as a synonym for the vacuum state of a quantized field which is completely individual. According to present-day understanding of what is called the vacuum state or the quantum vacuum, it is "by no means a simple empty space".
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.
We revisit the effective field theory of the two Higgs doublet model at tree level. The introduction of a novel basis in the UV theory allows us to derive matching coefficients in the effective description that resum important contributions from the Higgs ...
The classical Lagrangian of the Standard Model enjoys the symmetry of the full conformal group if the mass of the Higgs boson is put to zero. This is a hint that conformal symmetry may play a fundamental role in the ultimate theory describing nature. The o ...
We expand Hilbert series technologies in effective field theory for the inclusion of massive particles, enabling, among other things, the enumeration of operator bases for non-linearly realized gauge theories. We find that the Higgs mechanism is manifest a ...