In geometry, an affine plane is a two-dimensional affine space. Typical examples of affine planes are Euclidean planes, which are affine planes over the reals equipped with a metric, the Euclidean distance. In other words, an affine plane over the reals is a Euclidean plane in which one has "forgotten" the metric (that is, one does not talk of lengths nor of angle measures). Vector spaces of dimension two, in which the zero vector is not considered as different from the other elements For every field or division ring F, the set F2 of the pairs of elements of F The result of removing any single line (and all the points on this line) from any projective plane All the affine planes defined over a field are isomorphic. More precisely, the choice of an affine coordinate system (or, in the real case, a Cartesian coordinate system) for an affine plane P over a field F induces an isomorphism of affine planes between P and F2. In the more general situation, where the affine planes are not defined over a field, they will in general not be isomorphic. Two affine planes arising from the same non-Desarguesian projective plane by the removal of different lines may not be isomorphic. There are two ways to formally define affine planes, which are equivalent for affine planes over a field. The first one consists in defining an affine plane as a set on which a vector space of dimension two acts simply transitively. Intuitively, this means that an affine plane is a vector space of dimension two in which one has "forgotten" where the origin is. In incidence geometry, an affine plane is defined as an abstract system of points and lines satisfying a system of axioms. In the applications of mathematics, there are often situations where an affine plane without the Euclidean metric is used instead of the Euclidean plane.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.