Summary
In computer networking, the link layer is the lowest layer in the Internet protocol suite, the networking architecture of the Internet. The link layer is the group of methods and communications protocols confined to the link that a host is physically connected to. The link is the physical and logical network component used to interconnect hosts or nodes in the network and a link protocol is a suite of methods and standards that operate only between adjacent network nodes of a network segment. Despite the different semantics of layering between the Internet protocol suite and OSI model, the link layer is sometimes described as a combination of the OSI's data link layer (layer 2) and physical layer (layer 1). The link layer is described in and . RFC 1122 considers local area network protocols such as Ethernet and other IEEE 802 networks (e.g. Wi-Fi), and framing protocols such as Point-to-Point Protocol (PPP) to belong to the link layer. Local area networking standards such as Ethernet and IEEE 802.3 specifications use terminology from the seven-layer OSI model rather than the TCP/IP model. The TCP/IP model, in general, does not consider physical specifications, rather it assumes a working network infrastructure that can deliver media-level frames on the link. Therefore, RFC 1122 and RFC 1123, the definition of the TCP/IP model, do not discuss hardware issues and physical data transmission and set no standards for those aspects. Some textbook authors have supported the interpretation that physical data transmission aspects are part of the link layer. Others assumed that physical data transmission standards are not considered communication protocols, and are not part of the TCP/IP model. These authors assume a hardware layer or physical layer below the link layer, and several of them adopt the OSI term data link layer instead of link layer in a modified description of layering.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.