In polymer chemistry, ring-opening polymerization (ROP) is a form of chain-growth polymerization, in which the terminus of a polymer chain attacks cyclic monomers to form a longer polymer (see figure). The reactive center can be radical, anionic or cationic. Some cyclic monomers such as norbornene or cyclooctadiene can be polymerized to high molecular weight polymers by using metal catalysts. ROP is a versatile method for the synthesis of biopolymers. Ring-opening of cyclic monomers is often driven by the relief of bond-angle strain. Thus, as is the case for other types of polymerization, the enthalpy change in ring-opening is negative. Cyclic monomers that are amenable to ROP include epoxides, cyclic trisiloxanes, some lactones, lactides, cyclic carbonates, and amino acid N-carboxyanhydrides. Many strained cycloalkenes, e.g norbornene, are suitable monomers via ring-opening metathesis polymerization. Ring-opening polymerization has been used since the beginning of the 1900s to produce polymers. Synthesis of polypeptides which has the oldest history of ROP, dates back to the work in 1906 by Leuchs. Subsequently, the ROP of anhydro sugars provided polysaccharides, including synthetic dextran, xanthan gum, welan gum, gellan gum, diutan gum, and pullulan. Mechanisms and thermodynamics of ring-opening polymerization were established in the 1950s. The first high-molecular weight polymers (Mn up to 105) with a repeating unit were prepared by ROP as early as in 1976. An industrial application is the production of nylon-6. Ring-opening polymerization can proceed via radical, anionic, or cationic polymerization as described below. Additionally, radical ROP is useful in producing polymers with functional groups incorporated in the backbone chain that cannot otherwise be synthesized via conventional chain-growth polymerization of vinyl monomers. For instance, radical ROP can produce polymers with ethers, esters, amides, and carbonates as functional groups along the main chain.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
MSE-437: Polymer chemistry and macromolecular engineering
Know modern methods of polymer synthesis. Understand how parameters, which determine polymer structure and properties, such as molecular weight, molecular weight distribution, topology, microstructure
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
MSE-703: Science and technology of UV-induced polymerization
The course presents the main classes of photopolymers and key factors which control photopolymerization. It explains how to select the right formulation and optimize processes for a given application.
Show more
Related lectures (55)
Polymer Synthesis: Basics and Techniques
Explores polymer synthesis basics, including step and radical chain polymerization, molecular weight control, copolymerization, and crosslinked polymers for microengineering.
Processing of Cellulose Nanomaterials and Photo-Polymer Composites
Explores the processing of nano-cellulose-based photocurable composites, focusing on cellulose nanomaterials and environmentally friendly processes.
End-to-End Vector: Lecture 4
Explores the concept of end-to-end vector and its practical implications.
Show more
Related publications (118)

The Structural Dispersity of Oligoethylene Glycol-Containing Polymer Brushes Determines Their Interfacial Properties

Harm-Anton Klok, Alberto Ongaro, Irene Filipucci

Ought to their bioinert properties and facile synthesis, poly[(oligoethylene glycol)methacrylate]s (POEGMAs) have been raised as attractive alternatives to poly(ethylene glycols) (PEGs) in an array of (bio)material applications, especially when they are ap ...
Amer Chemical Soc2024

Bottlebrush Dielectric Elastomers with Improved Properties for Actuation

Yeerlan Adeli

Dielectric elastomer actuators (DEA) are elastic capacitors composed of a pair of compliant electrodes and a soft dielectric elastomer film sandwiched in between. This kind of stretchable capacitors can be actuated when charged, can generate electricity fr ...
EPFL2023

On-Demand Cross-Linkable Bottlebrush Polymers for Voltage- Driven Artificial Muscles

Frank Nüesch, Francis Owusu, Yeerlan Adeli

Dielectric elastomer actuators (DEAs) generate motion resembling natural muscles in reliability, adaptability, elongation, and frequency of operation. They are highly attractive in implantable soft robots or artificial organs. However, many applications of ...
AMER CHEMICAL SOC2023
Show more
Related concepts (4)
Polymer chemistry
Polymer chemistry is a sub-discipline of chemistry that focuses on the structures of chemicals, chemical synthesis, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applicable through a wide range of other chemistry sub-disciplines like organic chemistry, analytical chemistry, and physical chemistry. Many materials have polymeric structures, from fully inorganic metals and ceramics to DNA and other biological molecules.
Addition polymer
In polymer chemistry, an addition polymer is a polymer that forms by simple linking of monomers without the co-generation of other products. Addition polymerization differs from condensation polymerization, which does co-generate a product, usually water. Addition polymers can be formed by chain polymerization, when the polymer is formed by the sequential addition of monomer units to an active site in a chain reaction, or by polyaddition, when the polymer is formed by addition reactions between species of all degrees of polymerization.
Living polymerization
In polymer chemistry, living polymerization is a form of chain growth polymerization where the ability of a growing polymer chain to terminate has been removed. This can be accomplished in a variety of ways. Chain termination and chain transfer reactions are absent and the rate of chain initiation is also much larger than the rate of chain propagation. The result is that the polymer chains grow at a more constant rate than seen in traditional chain polymerization and their lengths remain very similar (i.e.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.