In polymer chemistry, living polymerization is a form of chain growth polymerization where the ability of a growing polymer chain to terminate has been removed. This can be accomplished in a variety of ways. Chain termination and chain transfer reactions are absent and the rate of chain initiation is also much larger than the rate of chain propagation. The result is that the polymer chains grow at a more constant rate than seen in traditional chain polymerization and their lengths remain very similar (i.e. they have a very low polydispersity index). Living polymerization is a popular method for synthesizing block copolymers since the polymer can be synthesized in stages, each stage containing a different monomer. Additional advantages are predetermined molar mass and control over end-groups.
Living polymerization is desirable because it offers precision and control in macromolecular synthesis. This is important since many of the novel/useful properties of polymers result from their microstructure and molecular weight. Since molecular weight and dispersity are less controlled in non-living polymerizations, this method is more desirable for materials design
In many cases, living polymerization reactions are confused or thought to be synonymous with controlled polymerizations. While these polymerization reactions are very similar, there is a distinction between the definitions of these two reactions. While living polymerizations are defined as polymerization reactions where termination or chain transfer is eliminated, controlled polymerization reactions are reactions where termination is suppressed, but not eliminated, through the introduction of a dormant state of the polymer. However, this distinction is still up for debate in the literature.
The main living polymerization techniques are:
Living anionic polymerization
Living cationic polymerization
Living ring-opening metathesis polymerization
Living free radical polymerization
Living chain-growth polycondensations
Living polymerization was demonstrated by Michael Szwarc in 1956 in the anionic polymerization of styrene with an alkali metal / naphthalene system in tetrahydrofuran (THF).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Know modern methods of polymer synthesis. Understand how parameters, which determine polymer structure and properties, such as molecular weight, molecular weight distribution, topology, microstructure
This course provides a basic foundation in organic
chemistry and polymer chemistry, including chemical nomenclature of organic compounds and polymers, an understanding of chemical structures, chemical
The first part of the course is devoted to the self-assembly of molecules. In the second part we discuss basic physical chemical principles of polymers in solutions, at interfaces, and in bulk. Finall
In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively. Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.
In polymer chemistry, free-radical polymerization (FRP) is a method of polymerization by which a polymer forms by the successive addition of free-radical building blocks (repeat units). Free radicals can be formed by a number of different mechanisms, usually involving separate initiator molecules. Following its generation, the initiating free radical adds (nonradical) monomer units, thereby growing the polymer chain. Free-radical polymerization is a key synthesis route for obtaining a wide variety of different polymers and materials composites.
In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them. In chemical compounds, polymerization can occur via a variety of reaction mechanisms that vary in complexity due to the functional groups present in the reactants and their inherent steric effects.
Explores polymer synthesis basics, including step and radical chain polymerization, molecular weight control, copolymerization, and crosslinked polymers for microengineering.
Recent advances in coupling light-harvesting microorganisms with electronic components have led to a new generation of biohybrid devices based on microbial photocatalysts. These devices are limited by the poorly conductive interface between phototrophs and ...
Dielectric elastomer actuators (DEA) are elastic capacitors composed of a pair of compliant electrodes and a soft dielectric elastomer film sandwiched in between. This kind of stretchable capacitors can be actuated when charged, can generate electricity fr ...
Polymer brushes, which are polymers anchored to a solid substrate by one chainend, have the ability to modify the properties of an underlying substrate, offeringintriguing features such as enhanced lubrication, reduced friction, colloidal stability, and an ...