Concept

Kessler syndrome

The Kessler syndrome (also called the Kessler effect, collisional cascading, or ablation cascade), proposed by NASA scientist Donald J. Kessler in 1978, is a scenario in which the density of objects in low Earth orbit (LEO) due to space pollution is numerous enough that collisions between objects could cause a cascade in which each collision generates space debris that increases the likelihood of further collisions. In 2009 Kessler wrote that modeling results had concluded that the debris environment was already unstable, "such that any attempt to achieve a growth-free small debris environment by eliminating sources of past debris will likely fail because fragments from future collisions will be generated faster than atmospheric drag will remove them". One implication is that the distribution of debris in orbit could render space activities and the use of satellites in specific orbital ranges difficult for many generations. Willy Ley predicted in 1960 that "In time, a number of such accidentally too-lucky shots will accumulate in space and will have to be removed when the era of manned space flight arrives". After the launch of Sputnik 1 in 1957, the North American Aerospace Defense Command (NORAD) began compiling a database (the Space Object Catalog) of all known rocket launches and objects reaching orbit: satellites, protective shields and upper- and lower-stage booster rockets. NASA later published modified versions of the database in two-line element set, and during the early 1980s the CelesTrak bulletin board system re-published them. The trackers who fed the database were aware of other objects in orbit, many of which were the result of in-orbit explosions. Some were deliberately caused during the 1960s anti-satellite weapon (ASAT) testing, and others were the result of rocket stages blowing up in orbit as leftover propellant expanded and ruptured their tanks. To improve tracking, NORAD employee John Gabbard kept a separate database.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (10)
Solar Radiation Spectrum: Understanding Earth's Energy Balance
Explores the solar radiation spectrum, Earth's energy balance, gravitational wells, and space debris challenges.
Additive Manufacturing: Materials and Processes
Explores additive manufacturing processes, including SLS and SLM, interface improvement, composite production, and space qualification for spacecraft panels.
Lessons from Space Exploration
Explores the lessons and advancements in space exploration, focusing on Skylab, Space Shuttle, and ISS.
Show more
Related publications (6)

Harvesting large astronomical data archives for space debris observations

Jean-Paul Richard Kneib, Stephan Hellmich, Elisabeth Andréa Cécile Rachith, Belén Yu Irureta-Goyena Chang

Despite enormous observational effort by numerous space surveillance networks, the population of small (
ESA Space Debris Office2023

Experimental investigation of surface roughness effect on a free-flight sphere in a Ludwieg tube

Seong-Hyeon Park

Understanding the aerodynamic coefficients of meteoroid fragments, deorbiting space debris, or launch vehicle stages through atmospheric reentry is essential for ground risk assessments. In high enthalpy flow, surface roughness is a crucial factor affectin ...
KOREAN SOC MECHANICAL ENGINEERS2022

Uncooperative Rendezvous in Space: Design of an Electronic Architecture for High Performance Avionic with Multi Sensor Input and Intensive Data Rate.

Michaël Yannick Juillard

Active Debris Removal missions consist of sending a satellite in space and removing one or more debris from their current orbit. A key challenge is to obtain information about the uncooperative target. By gathering the velocity, position, and rotation of t ...
EPFL2022
Show more
Related concepts (5)
Starlink
Starlink is a satellite internet constellation operated by American aerospace company SpaceX, providing coverage to over 60 countries. It also aims for global mobile phone service after 2023. SpaceX started launching Starlink satellites in 2019. As of August 2023, Starlink consists of over 5,000 mass-produced small satellites in low Earth orbit (LEO), which communicate with designated ground transceivers. In total, nearly 12,000 satellites are planned to be deployed, with a possible later extension to 42,000.
Space debris
Space debris (also known as space junk, space pollution, space waste, space trash, space garbage, or cosmic debris) are defunct human-made objects in space - principally in Earth orbit - which no longer serve a useful function. These include derelict spacecraft - nonfunctional spacecraft and abandoned launch vehicle stages - mission-related debris, and particularly numerous in Earth orbit, fragmentation debris from the breakup of derelict rocket bodies and spacecraft.
Low Earth orbit
A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never more than about one-third of the radius of Earth. The term LEO region is also used for the area of space below an altitude of (about one-third of Earth's radius). Objects in orbits that pass through this zone, even if they have an apogee further out or are sub-orbital, are carefully tracked since they present a collision risk to the many LEO satellites.
Show more