Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The Kessler syndrome (also called the Kessler effect, collisional cascading, or ablation cascade), proposed by NASA scientist Donald J. Kessler in 1978, is a scenario in which the density of objects in low Earth orbit (LEO) due to space pollution is numerous enough that collisions between objects could cause a cascade in which each collision generates space debris that increases the likelihood of further collisions. In 2009 Kessler wrote that modeling results had concluded that the debris environment was already unstable, "such that any attempt to achieve a growth-free small debris environment by eliminating sources of past debris will likely fail because fragments from future collisions will be generated faster than atmospheric drag will remove them". One implication is that the distribution of debris in orbit could render space activities and the use of satellites in specific orbital ranges difficult for many generations. Willy Ley predicted in 1960 that "In time, a number of such accidentally too-lucky shots will accumulate in space and will have to be removed when the era of manned space flight arrives". After the launch of Sputnik 1 in 1957, the North American Aerospace Defense Command (NORAD) began compiling a database (the Space Object Catalog) of all known rocket launches and objects reaching orbit: satellites, protective shields and upper- and lower-stage booster rockets. NASA later published modified versions of the database in two-line element set, and during the early 1980s the CelesTrak bulletin board system re-published them. The trackers who fed the database were aware of other objects in orbit, many of which were the result of in-orbit explosions. Some were deliberately caused during the 1960s anti-satellite weapon (ASAT) testing, and others were the result of rocket stages blowing up in orbit as leftover propellant expanded and ruptured their tanks. To improve tracking, NORAD employee John Gabbard kept a separate database.
Jean-Paul Richard Kneib, Stephan Hellmich, Elisabeth Andréa Cécile Rachith, Belén Yu Irureta-Goyena Chang