Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth.
For example, the Astronomical Almanac uses TT for its tables of positions (ephemerides) of the Sun, Moon and planets as seen from Earth. In this role, TT continues Terrestrial Dynamical Time (TDT or TD), which succeeded ephemeris time (ET). TT shares the original purpose for which ET was designed, to be free of the irregularities in the rotation of Earth.
The unit of TT is the SI second, the definition of which is based currently on the caesium atomic clock, but TT is not itself defined by atomic clocks. It is a theoretical ideal, and real clocks can only approximate it.
TT is distinct from the time scale often used as a basis for civil purposes, Coordinated Universal Time (UTC). TT is indirectly the basis of UTC, via International Atomic Time (TAI). Because of the historical difference between TAI and ET when TT was introduced, TT is approximately 32.184 s ahead of TAI.
A definition of a terrestrial time standard was adopted by the International Astronomical Union (IAU) in 1976 at its XVI General Assembly and later named Terrestrial Dynamical Time (TDT). It was the counterpart to Barycentric Dynamical Time (TDB), which was a time standard for Solar system ephemerides, to be based on a dynamical time scale. Both of these time standards turned out to be imperfectly defined. Doubts were also expressed about the meaning of 'dynamical' in the name TDT.
In 1991, in Recommendation IV of the XXI General Assembly, the IAU redefined TDT, also renaming it "Terrestrial Time". TT was formally defined in terms of Geocentric Coordinate Time (TCG), defined by the IAU on the same occasion. TT was defined to be a linear scaling of TCG, such that the unit of TT is the "SI second on the geoid", i.e. the rate approximately matched the rate of proper time on the Earth's surface at mean sea level.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day.
Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of mean solar time (such as UT1) at 0° longitude (at the IERS Reference Meridian as the currently used prime meridian) and is not adjusted for daylight saving time. It is effectively a successor to Greenwich Mean Time (GMT). The coordination of time and frequency transmissions around the world began on 1 January 1960.
The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events (e.g. food production date and sell by date). The Julian period is a chronological interval of 7980 years; year 1 of the Julian Period was 4713 BC (−4712). The Julian calendar year is year of the current Julian Period. The next Julian Period begins in the year AD 3268.
Explores Lorentz invariance, covering velocities, time dilation, and length contraction, with implications for symmetries and physical interpretations.
Explores the analysis of velocity data in biomechanics using Excel for visualization and interpretation.
Covers Einstein's equations in non-relativistic limit and the Schwarzschild metric.
In Peierls-distorted materials, photoexcitation leads to a strongly coupled transient response between structural and electronic degrees of freedom, always measured independently of each other. Here we use transient reflectivity in the extreme ultraviolet ...
Which phenomenon slows down the dynamics in supercooled liquids and turns them into glasses is a long-standing question of condensed matter. Most popular theories posit that as the temperature decreases, many events must occur in a coordinated fashion on a ...
Communication between cortical areas contributes importantly to sensory perception and cognition. On the millisecond time scale, information is signaled from one brain area to another by action potentials propagating across long-range axonal arborizations. ...