A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day.
Standardized time measurements are made using a clock to count periods of some period changes, which may be either the changes of a natural phenomenon or of an artificial machine.
Historically, time standards were often based on the Earth's rotational period. From the late 18 century to the 19th century it was assumed that the Earth's daily rotational rate was constant. Astronomical observations of several kinds, including eclipse records, studied in the 19th century, raised suspicions that the rate at which Earth rotates is gradually slowing and also shows small-scale irregularities, and this was confirmed in the early twentieth century. Time standards based on Earth rotation were replaced (or initially supplemented) for astronomical use from 1952 onwards by an ephemeris time standard based on the Earth's orbital period and in practice on the motion of the Moon. The invention in 1955 of the caesium atomic clock has led to the replacement of older and purely astronomical time standards, for most practical purposes, by newer time standards based wholly or partly on atomic time.
Various types of second and day are used as the basic time interval for most time scales. Other intervals of time (minutes, hours, and years) are usually defined in terms of these two.
The term "time" is generally used for many close but different concepts, including:
instant as an object – one point on the time axes. Being an object, it has no value;
date as a quantity characterising an instant. As a quantity, it has a value which may be expressed in a variety of ways, for example "2014-04-26T09:42:36,75" in ISO standard format, or more colloquially such as "today, 9:42 a.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Bases des références géodésiques, principe de mesure utilisé en localisation par satellites et de l'estimation de la qualité de positions GNSS (Global Navigation Satellites Systems).
Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of mean solar time (such as UT1) at 0° longitude (at the IERS Reference Meridian as the currently used prime meridian) and is not adjusted for daylight saving time. It is effectively a successor to Greenwich Mean Time (GMT). The coordination of time and frequency transmissions around the world began on 1 January 1960.
Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses TT for its tables of positions (ephemerides) of the Sun, Moon and planets as seen from Earth. In this role, TT continues Terrestrial Dynamical Time (TDT or TD), which succeeded ephemeris time (ET). TT shares the original purpose for which ET was designed, to be free of the irregularities in the rotation of Earth.
In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the mean longitude or mean anomaly of a body, the node of its orbit relative to a reference plane, the direction of the apogee or aphelion of its orbit, or the size of the major axis of its orbit.
We use our new light curves, along with historical data, to determine the rotation state, photometric properties, and convex shape models of the targets of the Lucy mission (3548) Eurybates and (21900) Orus. We determine a retrograde spin for both targets, ...
Photonic integrated circuits (PICs) are the subject of massive interest due to the range of applications they can provide at a huge scale while building on well-established CMOS technologies. One of the critical parameters defining a technology's maturity ...
Which phenomenon slows down the dynamics in supercooled liquids and turns them into glasses is a long-standing question of condensed matter. Most popular theories posit that as the temperature decreases, many events must occur in a coordinated fashion on a ...