In mathematics, an Azumaya algebra is a generalization of central simple algebras to R-algebras where R need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where R is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.
An Azumaya algebra
over a commutative ring is an -algebra obeying any of the following equivalent conditions:
There exists an -algebra such that the tensor product of -algebras is Morita equivalent to .
The -algebra is Morita equivalent to , where is the opposite algebra of .
The center of is , and is separable.
is finitely generated, faithful, and projective as an -module, and the tensor product is isomorphic to via the map sending to the endomorphism of .
Over a field , Azumaya algebras are completely classified by the Artin-Wedderburn theorem since they are the same as central simple algebras. These are algebras isomorphic to the matrix ring for some division algebra over whose center is just . For example, quaternion algebras provide examples of central simple algebras.
Given a local commutative ring , an -algebra is Azumaya if and only if A is free of positive finite rank as an R-module, and the algebra is a central simple algebra over , hence all examples come from central simple algebras over .
There is a class of Azumaya algebras called cyclic algebras which generate all similarity classes of Azumaya algebras over a field , hence all elements in the Brauer group (defined below). Given a finite cyclic Galois field extension of degree , for every and any generator there is a twisted polynomial ring , also denoted , generated by an element such that
and the following commutation property holds:
As a vector space over , has basis with multiplication given by
Note that give a geometrically integral variety , there is also an associated cyclic algebra for the quotient field extension .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...
Let R be a semilocal Dedekind domain with fraction field F. It is shown that two hereditary R-orders in central simple F-algebras that become isomorphic after tensoring with F and with some faithfully flat etale R-algebra are isomorphic. On the other hand, ...
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
In algebra, the center of a ring R is the subring consisting of the elements x such that xy = yx for all elements y in R. It is a commutative ring and is denoted as ; "Z" stands for the German word Zentrum, meaning "center". If R is a ring, then R is an associative algebra over its center. Conversely, if R is an associative algebra over a commutative subring S, then S is a subring of the center of R, and if S happens to be the center of R, then the algebra R is called a central algebra.
In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K. (Note that not every simple algebra is a central simple algebra over its center: for instance, if K is a field of characteristic 0, then the Weyl algebra is a simple algebra with center K, but is not a central simple algebra over K as it has infinite dimension as a K-module.