Summary
In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K. (Note that not every simple algebra is a central simple algebra over its center: for instance, if K is a field of characteristic 0, then the Weyl algebra is a simple algebra with center K, but is not a central simple algebra over K as it has infinite dimension as a K-module.) For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below). Given two central simple algebras A ~ M(n,S) and B ~ M(m,T) over the same field F, A and B are called similar (or Brauer equivalent) if their division rings S and T are isomorphic. The set of all equivalence classes of central simple algebras over a given field F, under this equivalence relation, can be equipped with a group operation given by the tensor product of algebras. The resulting group is called the Brauer group Br(F) of the field F. It is always a torsion group. According to the Artin–Wedderburn theorem a finite-dimensional simple algebra A is isomorphic to the matrix algebra M(n,S) for some division ring S. Hence, there is a unique division algebra in each Brauer equivalence class. Every automorphism of a central simple algebra is an inner automorphism (this follows from the Skolem–Noether theorem). The dimension of a central simple algebra as a vector space over its centre is always a square: the degree is the square root of this dimension. The Schur index of a central simple algebra is the degree of the equivalent division algebra: it depends only on the Brauer class of the algebra. The period or exponent of a central simple algebra is the order of its Brauer class as an element of the Brauer group. It is a divisor of the index, and the two numbers are composed of the same prime factors.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (2)
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-215: Rings and fields
C'est un cours introductoire dans la théorie d'anneau et de corps.
Related lectures (11)
Group Algebra: Maschke's Theorem
Explores Wedderburn's theorem, group algebras, and Maschke's theorem in the context of finite dimensional simple algebras and their endomorphisms.
Fermat's Theorem: Sums of Squares
Explores Fermat's Theorem, factorization of integers, properties of Z[i], and Hurwitz quaternions.
Ideals and Representations
Covers ideals, representations, modules, and maximal ideals in associative algebras.
Show more
Related publications (34)

Towards Motion Forecasting with Real-World Perception Inputs: Are End-to-End Approaches Competitive?

Alexandre Massoud Alahi

Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...
2024

Eigenvalue multiplicities of group elements in irreducible representations of simple linear algebraic groups

Ana-Maria Retegan

Let k be an algebraically closed field of arbitrary characteristic, let G be a simple simply connected linear algebraic group and let V be a rational irreducible tensor-indecomposable finite-dimensional kG-module. For an element g of G we denote by $V_{g}( ...
EPFL2022

Coxeter Combinatorics For Sum Formulas In The Representation Theory Of Algebraic Groups

Jonathan Gruber

Let G be a simple algebraic group over an algebraically closed field F of characteristic p >= h, the Coxeter number of G. We observe an easy 'recursion formula' for computing the Jantzen sum formula of a Weyl module with p-regular highest weight. We also d ...
AMER MATHEMATICAL SOC2022
Show more
Related units (1)
Related concepts (14)
Algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Simple ring
In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. It is then called a simple algebra over this field. Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple).
Brauer group
In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer. The Brauer group arose out of attempts to classify division algebras over a field. It can also be defined in terms of Galois cohomology. More generally, the Brauer group of a scheme is defined in terms of Azumaya algebras, or equivalently using projective bundles.
Show more