En algèbre générale, une opérade est une structure algébrique modélisant les propriétés (associativité, commutativité et autres relations) d'une algèbre. Intuitivement, les éléments d'une opérade correspondent à des opérations à plusieurs entrées, que l'on peut additionner et composer. On représente ces opérations par des arbres, que l'on peut greffer les uns aux autres pour représenter les compositions. Les opérades ont été introduites en topologie algébrique par J. Peter May, et Rainer Vogt au début des années 1970, notamment pour modéliser les espaces de lacets itérés. Regardons la structure algébrique que l'on peut mettre sur les ensembles des fonctions à plusieurs variables de (pour tout entier n positif) dans , où est un espace vectoriel réel. On peut multiplier une fonction par un réel, et additionner deux fonctions de . On a ainsi une structure d'espace vectoriel sur chaque , donc une structure de module sur . On peut rajouter une opération de composition, généralisant le classique existant pour les fonctions d'une variable : à et , on peut associer une fonction à n+m-1 variables où on a remplacé par la fonction . On note cette opération , et on l'appelle « produit de composition partiel » (de g à la ième place de f). On peut représenter graphiquement cette opération par une greffe d'arbres : 650px|center|Représentation graphique de la composition. Ce produit de composition partiel vérifie deux relations d'associativité, correspondant au fait que l'ordre n'importe pas dans les compositions suivantes : center center La suite des ensembles P(n), munie de ces opérations (multiplication par un scalaire, addition, produit de composition partiel), est une opérade non symétrique. On peut faire agir le groupe symétrique sur n variables et obtenir par équivariance une action de sur chaque . Cette action possède des propriétés de compatibilité avec les opérations de l'opérade. Ceci donne une structure d'opérade à la suite des ensembles P(n).