Summary
A spectrum analyzer measures the magnitude of an input signal versus frequency within the full frequency range of the instrument. The primary use is to measure the power of the spectrum of known and unknown signals. The input signal that most common spectrum analyzers measure is electrical; however, spectral compositions of other signals, such as acoustic pressure waves and optical light waves, can be considered through the use of an appropriate transducer. Spectrum analyzers for other types of signals also exist, such as optical spectrum analyzers which use direct optical techniques such as a monochromator to make measurements. By analyzing the spectra of electrical signals, dominant frequency, power, distortion, harmonics, bandwidth, and other spectral components of a signal can be observed that are not easily detectable in time domain waveforms. These parameters are useful in the characterization of electronic devices, such as wireless transmitters. The display of a spectrum analyzer has frequency displayed on the horizontal axis and the amplitude on the vertical axis. To the casual observer, a spectrum analyzer looks like an oscilloscope, which plots amplitude on the vertical axis but time on the horizontal axis. In fact, some lab instruments can function either as an oscilloscope or a spectrum analyzer. The first spectrum analyzers, in the 1960s, were swept-tuned instruments. Following the discovery of the fast Fourier transform (FFT) in 1965, the first FFT-based analyzers were introduced in 1967. Today, there are three basic types of analyzer: the swept-tuned spectrum analyzer, the vector signal analyzer, and the real-time spectrum analyzer. Spectrum analyzer types are distinguished by the methods used to obtain the spectrum of a signal. There are swept-tuned and fast Fourier transform (FFT) based spectrum analyzers: A swept-tuned analyzer uses a superheterodyne receiver to down-convert a portion of the input signal spectrum to the center frequency of a narrow band-pass filter, whose instantaneous output power is recorded or displayed as a function of time.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CH-419: Protein mass spectrometry and proteomics
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
COM-500: Statistical signal and data processing through applications
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
EE-525: HF and VHF circuits and techniques II
Master the design of circuits and systems at high frequency (HF) and very high frequency (VHF) (1 MHz-6GHz). This lecture is particularly oriented towards circuit aspects of modern communications syst
Related publications (84)