Publication

Time-resolved physical spectrum in cavity quantum electrodynamics

Alexey Lyasota
2022
Journal paper
Abstract

The time-resolved physical spectrum of luminescence is theoretically studied for a standard cavity quantum electrodynamics system. In contrast to the power spectrum for the steady state, the correlation functions up to the present time are crucial for the construction of the time-resolved spectrum, while the correlations with future quantities are inaccessible because of the causality, i.e., the future quantities cannot be measured until the future comes. We find that this causality plays a key role in understanding the time-resolved spectrum, in which the Rabi doublet can never be seen during the time of the first peak of the Rabi oscillation. Furthermore, the causality can influence the transient magnitude of the Rabi doublet in some situations. We also study the dynamics of the Fano antiresonance, where the difference from the Rabi doublet can be highlighted.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Time
Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience. Time is often referred to as a fourth dimension, along with three spatial dimensions.
Quantum electrodynamics
In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.
Public-key cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security.
Show more
Related publications (36)

Creating the conditions for Western European petroculture: The Marshall Plan, the politics of the OEEC, and the transition from coal to oil

Nicolas Christophe Chachereau

In the postwar years, petroleum products pervaded more and more aspects of Western European life. In this article, we study the origins of this pervasive petroculture through the lens of the Marshall Plan/European Recovery Program (ERP), its Refinery Expan ...
2023

Superior visible light-mediated catalytic activity of a novel N-doped, Fe3O4-incorporating MgO nanosheet in presence of PMS: Imidacloprid degradation and implications on simultaneous bacterial inactivation

Stefanos Giannakis, Jérémie Decker

Impressive Imidacloprid (IMD) degradation and bacterial inactivation were attained through the photocatalytic activation of peroxymonosulfate (PMS) via a novel, N-doped MgO@Fe3O4, under visible light. After complete characterization (XPS, XRD, FT-IR, FE-SE ...
ELSEVIER2022

Dual-responsive polyphosphazene as a common platform for highly efficient drug self-delivery

For clinical applications, simplicity, high efficiency, and low toxicity are key issues in the design of anti-tumor drugs. In this work, a novel dual-responsive drug self-framed delivery system (DSFDS) with high drug delivery efficiency is proposed based o ...
2019
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.