Tic-tac-toe (American English), noughts and crosses (Commonwealth English), or Xs and Os (Canadian or Irish English) is a paper-and-pencil game for two players who take turns marking the spaces in a three-by-three grid with X or O. The player who succeeds in placing three of their marks in a horizontal, vertical, or diagonal row is the winner. It is a solved game, with a forced draw assuming best play from both players.
In American English, the game is known as "tic-tac-toe".
In Commonwealth English (particularly British, South African, Australian and New Zealand English), the game is known as "noughts and crosses". This name derives from the shape of the marks in the game (i.e the X and O); "nought" is an older name for the number zero, while "cross" refers to the X shape. While the term nought is now less commonly used, the name "noughts and crosses" is still preferred over the American name "tic-tac-toe" in these countries.
Tic-tac-toe is played on a three-by-three grid by two players, who alternately place the marks X and O in one of the nine spaces in the grid.
In the following example, the first player (X) wins the game in seven steps:
There is no universally agreed rule as to who plays first, but in this article the convention that X plays first is used.
Players soon discover that the best play from both parties leads to a draw. Hence, tic-tac-toe is often played by young children who may not have discovered the optimal strategy.
Because of the simplicity of tic-tac-toe, it is often used as a pedagogical tool for teaching the concepts of good sportsmanship and the branch of artificial intelligence that deals with the searching of game trees. It is straightforward to write a computer program to play tic-tac-toe perfectly or to enumerate the 765 essentially different positions (the state space complexity) or the 26,830 possible games up to rotations and reflections (the game tree complexity) on this space. If played optimally by both players, the game always ends in a draw, making tic-tac-toe a futile game.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In economics, perfect information (sometimes referred to as "no hidden information") is a feature of perfect competition. With perfect information in a market, all consumers and producers have complete and instantaneous knowledge of all market prices, their own utility, and own cost functions. In game theory, a sequential game has perfect information if each player, when making any decision, is perfectly informed of all the events that have previously occurred, including the "initialization event" of the game (e.
Gomoku, also called Five in a Row, is an abstract strategy board game. It is traditionally played with Go pieces (black and white stones) on a Go board. It is played using a 15×15 board while in the past a 19×19 board was standard. Because pieces are typically not moved or removed from the board, gomoku may also be played as a paper-and-pencil game. The game is known in several countries under different names. Players alternate turns placing a stone of their color on an empty intersection. Black plays first.
Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a position that the players take turns changing in defined ways or moves to achieve a defined winning condition. Combinatorial game theory has not traditionally studied games of chance or those that use imperfect or incomplete information, favoring games that offer perfect information in which the state of the game and the set of available moves is always known by both players.
Delves into rule systems, simulations, and parallel worlds, exploring Prolog, backtracking algorithms, logic complexity, the Game of Life simulation, and the concept of Simulats.
Cette recherche s'inscrit dans le cadre des travaux du Working Group 2 «Humans as e-Actors» de l'Action COST 298 (programme européen de recherche dont le thème est « Participation in the Broadband Society »), et plus particulièrement dans la thématique por ...