Reflective surfaces, or ground-based albedo modification (GBAM), is a solar radiation management method of enhancing Earth's albedo (the ability to reflect the visible, infrared, and ultraviolet wavelengths of the Sun, reducing heat transfer to the surface). The IPCC described this method as "whitening roofs, changes in land use management (e.g., no-till farming), change of albedo at a larger scale (covering glaciers or deserts with reflective sheeting and changes in ocean albedo)."
The most well-known type of reflective surface is a type of roof called the "cool roof". While cool roofs are mostly associated with white roofs, they come in a variety of colors and materials and are available for both commercial and residential buildings.
As a method to address global warming, the IPCC 2018 report indicated that the potential for global temperature reduction was "small," yet was in high agreement over the recognition of temperature changes of 1-3°C on a regional scale. Limited application of reflective surfaces can mitigate urban heat island effect.
Reflective surfaces can be used to change the albedo of agricultural and urban areas, noting that a 0.04-0.1 albedo change in urban and agricultural areas could potentially reduce global temperatures for overshooting 1.0°C.
The reflective surfaces approach is similar to passive daytime radiative cooling (PDRC) being that they are both ground-based, yet PDRC focuses on "increasing the radiative heat emission from the Earth rather than merely decreasing its solar absorption."
Cool roofs, in hot climates, can offer both immediate and long-term benefits including:
Savings of up to 15% of the annual air-conditioning energy use for a single-story building
Help in mitigating the urban heat island effect.
Reduced air pollution and greenhouse gas emissions, as well as a significant offsetting of the warming impact of greenhouse gas emissions.
Cool roofs achieve cooling energy savings in hot summers but can increase heating energy load during cold winters.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A green roof or living roof is a roof of a building that is partially or completely covered with vegetation and a growing medium, planted over a waterproofing membrane. It may also include additional layers such as a root barrier and drainage and irrigation systems. Container gardens on roofs, where plants are maintained in pots, are not generally considered to be true green roofs, although this is debated. Rooftop ponds are another form of green roofs which are used to treat greywater.
Passive daytime radiative cooling (PDRC) is a renewable cooling method proposed as a solution to global warming of enhancing terrestrial heat flow to outer space through the installation of thermally-emissive surfaces on Earth that require zero energy consumption or pollution. Because all materials in nature absorb more heat during the day than at night, PDRC surfaces are designed to be high in solar reflectance (to minimize heat gain) and strong in longwave infrared (LWIR) thermal radiation heat transfer through the atmosphere's infrared window (8–13 μm) to cool temperatures during the daytime.
A Zero-Energy Building (ZEB), also known as a Net Zero-Energy (NZE) building, is a building with net zero energy consumption, meaning the total amount of energy used by the building on an annual basis is equal to the amount of renewable energy created on the site or in other definitions by renewable energy sources offsite, using technology such as heat pumps, high efficiency windows and insulation, and solar panels. The goal is that these buildings contribute less overall greenhouse gas to the atmosphere during operations than similar non-ZNE buildings.
Ce cours traite des divers domaines techniques intervenant dans la conception et la réalisation d'un bâtiment, soit : physique du bâtiment, structures, matériaux, construction et installations techniq
Explores thermal losses in building technology, emphasizing windows, frames, and air infiltration.
Covers the Earth's climate system components, interactions, and energy balance, including the impact of anthropogenic forcings and the role of the biosphere.
Explores the processes of snow metamorphism, from equilibrium to kinetic, affecting snowpack layering and structural strength.
Inorganic perovskite solar cells (PSCs) suffer from serious carrier recombination and open-circuit voltage loss because of surface defects and unfavorable energy level alignment. Herein, a polylactic acid (PLA) modification approach to improve the performa ...
Understanding the cooling service provided by vegetation in cities is important to inform urban policy and planning. However, the performance of decision-support tools estimating heat mitigation for urban greening strategies has not been evaluated systemat ...
The pre-thermal quench (pre-TQ) dynamics of a pure deuterium ( D 2 ) shattered pellet injection (SPI) into a 3 MA / 7 MJ JET H-mode plasma is studied via 3D non-linear MHD modelling with the JOREK code. The interpretative modelling captures the overall evo ...