Concept

Chebyshev's bias

In number theory, Chebyshev's bias is the phenomenon that most of the time, there are more primes of the form 4k + 3 than of the form 4k + 1, up to the same limit. This phenomenon was first observed by Russian mathematician Pafnuty Chebyshev in 1853. Let π(x; n, m) denote the number of primes of the form nk + m up to x. By the prime number theorem (extended to arithmetic progression), That is, half of the primes are of the form 4k + 1, and half of the form 4k + 3. A reasonable guess would be that π(x; 4, 1) > π(x; 4, 3) and π(x; 4, 1) < π(x; 4, 3) each also occur 50% of the time. This, however, is not supported by numerical evidence — in fact, π(x; 4, 3) > π(x; 4, 1) occurs much more frequently. For example, this inequality holds for all primes x < 26833 except 5, 17, 41 and 461, for which π(x; 4, 1) = π(x; 4, 3). The first x such that π(x; 4, 1) > π(x; 4, 3) is 26861, that is, π(x; 4, 3) ≥ π(x; 4, 1) for all x < 26861. In general, if 0 < a, b < n are integers, GCD(a, n) = GCD(b, n) = 1, a is a quadratic residue mod n, b is a quadratic nonresidue mod n, then π(x; n, b) > π(x; n, a) occurs more often than not. This has been proved only by assuming strong forms of the Riemann hypothesis. The stronger conjecture of Knapowski and Turán, that the density of the numbers x for which π(x; 4, 3) > π(x; 4, 1) holds is 1 (that is, it holds for almost all x), turned out to be false. They, however, do have a logarithmic density, which is approximately 0.9959.... This is for k = −4 to find the smallest prime p such that (where is the Kronecker symbol), however, for a given nonzero integer k (not only k = −4), we can also find the smallest prime p satisfying this condition. By the prime number theorem, for every nonzero integer k, there are infinitely many primes p satisfying this condition. For positive integers k = 1, 2, 3, ..., the smallest primes p are 2, 11100143, 61981, 3, 2082927221, 5, 2, 11100143, 2, 3, 577, 61463, 2083, 11, 2, 3, 2, 11100121, 5, 2082927199, 1217, 3, 2, 5, 2, 17, 61981, 3, 719, 7, 2, 11100143, 2, 3, 23, 5, 11, 31, 2, 3, 2, 13, 17, 7, 2082927199, 3, 2, 61463, 2, 11100121, 7, 3, 17, 5, 2, 11, 2, 3, 31, 7, 5, 41, 2, 3, .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.