Concept

E9 honeycomb

DISPLAYTITLE:E9 honeycomb In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded. E10 is last of the series of Coxeter groups with a bifurcated Coxeter-Dynkin diagram of lengths 6,2,1. There are 1023 unique E10 honeycombs by all combinations of its Coxeter-Dynkin diagram. There are no regular honeycombs in the family since its Coxeter diagram is a nonlinear graph, but there are three simplest ones, with a single ring at the end of its 3 branches: 621, 261, 162. The 621 honeycomb is constructed from alternating 9-simplex and 9-orthoplex facets within the symmetry of the E10 Coxeter group. This honeycomb is highly regular in the sense that its symmetry group (the affine E9 Weyl group) acts transitively on the k-faces for k ≤ 7. All of the k-faces for k ≤ 8 are simplices. This honeycomb is last in the series of k21 polytopes, enumerated by Thorold Gosset in 1900, listing polytopes and honeycombs constructed entirely of regular facets, although his list ended with the 8-dimensional the Euclidean honeycomb, 521. It is created by a Wythoff construction upon a set of 10 hyperplane mirrors in 9-dimensional hyperbolic space. The facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on the end of the 2-length branch leaves the 9-orthoplex, 711. Removing the node on the end of the 1-length branch leaves the 9-simplex. The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 521 honeycomb. The edge figure is determined from the vertex figure by removing the ringed node and ringing the neighboring node. This makes the 421 polytope. The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 321 polytope. The cell figure is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the 221 polytope.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.