DISPLAYTITLE:Uniform 1 k2 polytope
In geometry, 1k2 polytope is a uniform polytope in n-dimensions (n = k+4) constructed from the En Coxeter group. The family was named by their Coxeter symbol 1k2 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. It can be named by an extended Schläfli symbol {3,3k,2}.
The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-demicube (demipenteract) in 5-dimensions, and the 4-simplex (5-cell) in 4-dimensions.
Each polytope is constructed from 1k-1,2 and (n-1)-demicube facets. Each has a vertex figure of a {31,n-2,2} polytope is a birectified n-simplex, t2{3n}.
The sequence ends with k=6 (n=10), as an infinite tessellation of 9-dimensional hyperbolic space.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
DISPLAYTITLE:Uniform 2 k1 polytope In geometry, 2k1 polytope is a uniform polytope in n dimensions (n = k+4) constructed from the En Coxeter group. The family was named by their Coxeter symbol as 2k1 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. It can be named by an extended Schläfli symbol {3,3,3k,1}. The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-orthoplex (pentacross) in 5-dimensions, and the 4-simplex (5-cell) in 4-dimensions.
DISPLAYTITLE:1 42 polytope In 8-dimensional geometry, the 142 is a uniform 8-polytope, constructed within the symmetry of the E8 group. Its Coxeter symbol is 142, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequences. The rectified 142 is constructed by points at the mid-edges of the 142 and is the same as the birectified 241, and the quadrirectified 421.
In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams. The Coxeter symbol for these figures has the form ki,j, where each letter represents a length of order-3 branches on a Coxeter–Dynkin diagram with a single ring on the end node of a k length sequence of branches.
Explore la conservation de l'énergie mécanique et son application dans la résolution de problèmes de physique impliquant le travail, la stabilité et les transformations énergétiques.