Drylands are defined by a scarcity of water. Drylands are zones where precipitation is balanced by evaporation from surfaces and by transpiration by plants (evapotranspiration). The United Nations Environment Program defines drylands as tropical and temperate areas with an aridity index of less than 0.65. One can classify drylands into four sub-types:
Dry sub-humid lands
Demi-arid lands
Arid lands
Hyper-arid lands
Some authorities regard hyper-arid lands as deserts (United Nations Convention to Combat Desertification - UNCCD) although a number of the world's deserts include both hyper-arid and arid climate zones. The UNCCD excludes hyper-arid zones from its definition of drylands.
Drylands cover 41.3% of the earth's land surface, including 15% of Latin America, 66% of Africa, 40% of Asia, and 24% of Europe. There is a significantly greater proportion of drylands in developing countries (72%), and the proportion increases with aridity: almost 100% of all hyper-arid lands are in the developing world. Nevertheless, the United States, Australia, and several countries in Southern Europe also contain significant dryland areas.
Drylands are complex, evolving structures whose characteristics and dynamic properties depend on many interrelated interactions between climate, soil, and vegetation.
The livelihoods of millions of people in developing countries depend highly on dryland biodiversity to ensure their food security and their well-being. Drylands, unlike more humid biomes, rely mostly on above ground water runoff for redistribution of water, and almost all their water redistribution occurs on the surface. Dryland inhabitants' lifestyle provides global environmental benefits which contribute to halt climate change, such as carbon sequestration and species conservation. Dryland biodiversity is equally of central importance as to ensuring sustainable development, along with providing significant global economic values through the provision of ecosystem services and biodiversity products.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Water Use Efficiency (WUE) is the variable linking assimilation and storage of carbon in plants with the release of water through transpiration. In this study, we combine multiple datasets including global scale leaf-level gas exchange measurements, tree-r ...
A dust storm, also called a sandstorm, is a meteorological phenomenon common in arid and semi-arid regions. Dust storms arise when a gust front or other strong wind blows loose sand and dirt from a dry surface. Fine particles are transported by saltation and suspension, a process that moves soil from one place and deposits it in another. The arid regions of North Africa, the Arabian peninsula, Central Asia and China are the main terrestrial sources of airborne dust.
From infiltration of water into the soil during rainstorms to seasonal plant growth and death, the ecohydrological processes that are thought to be relevant to the formation of banded vegetation patterns in drylands occur across multiple timescales. We pro ...
Drylands are regions encompassing hyperarid, arid, semiarid, or subhumid climatic conditions (see also Chap. 1). They include cold and warm subtropical deserts, savannas, and the Mediterranean environments. Our focus here is on warm drylands, which are gen ...