Summary
Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule. Photodissociation is not limited to visible light. Any photon with sufficient energy can affect the chemical bonds of a chemical compound. Since a photon's energy is inversely proportional to its wavelength, electromagnetic radiations with the energy of visible light or higher, such as ultraviolet light, X-rays, and gamma rays can induce such reactions. Photolysis is part of the light-dependent reaction or light phase or photochemical phase or Hill reaction of photosynthesis. The general reaction of photosynthetic photolysis can be given in terms of photons as: The chemical nature of "A" depends on the type of organism. Purple sulfur bacteria oxidize hydrogen sulfide () to sulfur (S). In oxygenic photosynthesis, water () serves as a substrate for photolysis resulting in the generation of diatomic oxygen (). This is the process which returns oxygen to Earth's atmosphere. Photolysis of water occurs in the thylakoids of cyanobacteria and the chloroplasts of green algae and plants. The conventional semi-classical model describes the photosynthetic energy transfer process as one in which excitation energy hops from light-capturing pigment molecules to reaction center molecules step-by-step down the molecular energy ladder. The effectiveness of photons of different wavelengths depends on the absorption spectra of the photosynthetic pigments in the organism. Chlorophylls absorb light in the violet-blue and red parts of the spectrum, while accessory pigments capture other wavelengths as well. The phycobilins of red algae absorb blue-green light which penetrates deeper into water than red light, enabling them to photosynthesize in deep waters. Each absorbed photon causes the formation of an exciton (an electron excited to a higher energy state) in the pigment molecule.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.