In mesoscopic physics, ballistic conduction (ballistic transport) is the unimpeded flow (or transport) of charge carriers (usually electrons), or energy-carrying particles, over relatively long distances in a material. In general, the resistivity of a material exists because an electron, while moving inside a medium, is scattered by impurities, defects, thermal fluctuations of ions in a crystalline solid, or, generally, by any freely-moving atom/molecule composing a gas or liquid. Without scattering, electrons simply obey Newton's second law of motion at non-relativistic speeds.
The mean free path of a particle can be described as the average length that the particle can travel freely, i.e., before a collision, which could change its momentum. The mean free path can be increased by reducing the number of impurities in a crystal or by lowering its temperature. Ballistic transport is observed when the mean free path of the particle is (much) longer than the dimension of the medium through which the particle travels. The particle alters its motion only upon collision with the walls. In the case of a wire suspended in air/vacuum the surface of the wire plays the role of the box reflecting the electrons and preventing them from exiting toward the empty space/open air. This is because there is an energy to be paid to extract the electron from the medium (work function).
Ballistic conduction is typically observed in quasi-1D structures, such as carbon nanotubes or silicon nanowires, because of extreme size quantization effects in these materials. Ballistic conduction is not limited to electrons (or holes) but can also apply to phonons. It is theoretically possible for ballistic conduction to be extended to other quasi-particles, but this has not been experimentally verified. For a specific example, ballistic transport can be observed in a metal nanowire: due to the small size of the wire (nanometer-scale or 10−9 meters scale) and the mean free path which can be longer than that in a metal.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides the trends in nanoelectronics for scaling, better performances and lower energy per function. It covers fundamental phenomena of nanoscale devices, beyond CMOS steep slope switche
The course provides an in depth modeling of emerging field effect transistors in CMOS technologty. Starting from the basis, the course will gardually introduce essential aspects to end up with a rigor
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source. FETs are also known as unipolar transistors since they involve single-carrier-type operation.
Accurate characterization of the dynamic ON-resistance (RON) degradation is important to predict conduction losses for gallium nitride high-electron-mobility transistors (GaN HEMTs). However, even for the same device, many inconsistent results of dynamic R ...
2023
Additive manufacturing (AM) is a group of processing technologies which has the potential to revolutionize manufacturing by allowing easy manufacturing of complex shapes and small series. One AM-method which is of high interest for processing of metals is ...
EPFL2021
, ,
We detect short oligonucleotides and distinguish between sequences that differ by a single base, using label-free, electronic field-effect transistors (FETs). Our sensing platform utilizes ultrathin-film indium oxide FETs chemically functionalized with sin ...