**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Gianmarco Gatti

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related units (4)

Related research domains (15)

Courses taught by this person

Electronic band structure

In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy th

Angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a cr

Electronic structure

In physics, electronic structure is the state of motion of electrons in an electrostatic field created by stationary nuclei. The term encompasses both the wave functions of the electrons and the ene

No results

Related publications (13)

Loading

Loading

Loading

People doing similar research (81)

Helmuth Berger, Alberto Crepaldi, Mauro Fanciulli, Gianmarco Gatti, Daniel Gosalbez Martinez, Marco Grioni, Arnaud Magrez, Oleg Yazyev

Local inversion symmetry breaking in centrosymmetric materials can lead to large spin polarization of the electronic band structure in separate sectors of the unit cell. Here, the authors reveal such hidden spin polarisation in ZrSiTe using spin and angle resolved photoemission spectroscopy in combination with ab initio band structure calculations and investigate the resultant spin polarised bulk and surface properties In non-magnetic materials the combination of inversion symmetry breaking (ISB) and spin-orbit coupling (SOC) determines the spin polarization of the band structure. However, a local spin polarization can also arise in centrosymmetric crystals containing ISB subunits. This is namely the case for the nodal-line semimetal ZrSiTe where, by combining spin- and angle-resolved photoelectron spectroscopy with ab initio band structure calculations, we reveal a complex spin polarization. In the bulk, the valence and conduction bands exhibit opposite spin orientations in two spatially separated two-dimensional ZrTe sectors within the unit cell, yielding no net polarization. We also observe spin-polarized surface states that are well separated in energy and momentum from the bulk bands. A layer-by-layer analysis of the spin polarization allows us to unveil the complex evolution of the signal in the bulk states near the surface, thus bringing the intertwined nature of surface and bulk effects to the fore.

, , , , , , , ,

Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with outstanding transport properties which are not yet fully understood. We find signatures of large polaron formation in the electronic structure of the inorganic LHP CsPbBr3 by means of angle-resolved photoelectron spectroscopy. The experimental valence band dispersion shows a hole effective mass of 0.26 +/- 0.02 m(e), 50% heavier than the bare mass m(0) = 0.17 m(e) predicted by density functional theory. Calculations of the electron-phonon coupling indicate that phonon dressing of the carriers mainly occurs via distortions of the Pb-Br bond with a Frohlich coupling parameter alpha = 1.81. A good agreement with our experimental data is obtained within the Feynman polaron model, validating a viable theoretical method to predict the carrier effective mass of LHPs ab initio.

Symmetry and topology are fundamental properties of nature. Mathematics provides us with a general framework to understand these concepts. On one side, symmetry describes the invariance properties of an object for specific transformations. On the other side, topology classifies objects under continuous deformations. Two objects with different topologies cannot be deformed one into each other without creating or annihilating a singularity, sometimes referred to as 'node'.
These concepts gradually found applications in physics, namely in the description of the electronic properties of solids, which is the focus of this thesis. Symmetry and topology protect special nodes in the band structure of a crystal, where several states are degenerate in energy. Close to a node, the electron wave function obeys the Dirac or Weyl Hamiltonians, which were formally introduced to describe fermions in high-energy particle physics. These exotic fermions exhibit unique optical and transport properties, fully manifesting their quantum nature. Symmetry guides us in the search for which classes of materials may host topological nodes. Recently the attention of the scientific community has been attracted by crystals with non-symmorphic symmetries (screw axes and glide planes), as promising candidates for topological phases.
This thesis focuses on two families of non-symmorphic crystals, whose topological properties have been investigated by combining conventional angle-resolved photoelectron spectroscopy (ARPES) with state-of-the-art spin-resolved (spARPES) and time-resolved ARPES (trARPES). The experimental results are supported by calculations carried out in collaboration with theory groups.
ZrSiTe and ZrSiSe belong to the same class of non-trivial semimetals. They host Dirac electrons with large mobility. The results of my spARPES experiments clarify that spin-orbit interaction (SOI) not only removes the topological nodes in ZrSiTe, but also induces a 'hidden' spin polarization of its bulk electronic states, otherwise forbidden by the inversion symmetry of the lattice. Moreover, trARPES data provide evidence that the electron-electron interaction is only partially screened in the metallic state of ZrSiSe. As a consequence, the band velocity is enhanced, at odds with general expectations. More importantly, I show that this band renormalization can be controlled at the ultrafast time scale (namely fs scale, with 1 fs=10^{-15} s) via intense optical excitation, paving the way for engineering the band structure of Dirac semimetals.
Tellurium is a chiral semiconductor, with a small and direct band gap. The low-symmetry of its lattice and the simple chemical composition make it the ideal case to study the interplay between symmetry and topology. With ARPES I determine several Weyl nodes in its electronic structure. By means of spARPES, I demonstrate that in their surrounding the spin exhibits a hedgehog configuration. This observation is new and it highlights the connection between spin-dependent and topology-related properties in Te. Finally, I illustrate promising preliminary results based on trARPES that explore the appealing possibility of optically controlling the topology of the electronic structure of Te upon excitation of coherent phonons.