Concept

Midpoint polygon

In geometry, the midpoint polygon of a polygon P is the polygon whose vertices are the midpoints of the edges of P. It is sometimes called the Kasner polygon after Edward Kasner, who termed it the inscribed polygon "for brevity". The midpoint polygon of a triangle is called the medial triangle. It shares the same centroid and medians with the original triangle. The perimeter of the medial triangle equals the semiperimeter of the original triangle, and the area is one quarter of the area of the original triangle. This can be proven by the midpoint theorem of triangles and Heron's formula. The orthocenter of the medial triangle coincides with the circumcenter of the original triangle. The midpoint polygon of a quadrilateral is a parallelogram called its Varignon parallelogram. If the quadrilateral is simple, the area of the parallelogram is one half the area of the original quadrilateral. The perimeter of the parallelogram equals the sum of the diagonals of the original quadrilateral.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.