Summary
In computer programming, a null-terminated string is a character string stored as an array containing the characters and terminated with a null character (a character with an internal value of zero, called "NUL" in this article, not same as the glyph zero). Alternative names are C string, which refers to the C programming language and ASCIIZ (although C can use encodings other than ASCII). The length of a string is found by searching for the (first) NUL. This can be slow as it takes O(n) (linear time) with respect to the string length. It also means that a string cannot contain a NUL (there is a NUL in memory, but it is after the last character, not the string). Null-terminated strings were produced by the .ASCIZ directive of the PDP-11 assembly languages and the ASCIZ directive of the MACRO-10 macro assembly language for the PDP-10. These predate the development of the C programming language, but other forms of strings were often used. At the time C (and the languages that it was derived from) was developed, memory was extremely limited, so using only one byte of overhead to store the length of a string was attractive. The only popular alternative at that time, usually called a "Pascal string" (a more modern term is "length-prefixed"), used a leading byte to store the length of the string. This allows the string to contain NUL and made finding the length of an already stored string need only one memory access (O(1) (constant) time), but limited string length to 255 characters (on a machine using 8-bit bytes). C designer Dennis Ritchie chose to follow the convention of null-termination to avoid the limitation on the length of a string and because maintaining the count seemed, in his experience, less convenient than using a terminator. This had some influence on CPU instruction set design. Some CPUs in the 1970s and 1980s, such as the Zilog Z80 and the DEC VAX, had dedicated instructions for handling length-prefixed strings.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (20)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
ME-213: Programmation pour ingénieur
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
CS-108: Practice of object-oriented programming
Les étudiants perfectionnent leurs connaissances en Java et les mettent en pratique en réalisant un projet de taille conséquente. Ils apprennent à utiliser et à mettre en œuvre les principaux types de
Show more
Related lectures (54)
Logic and Algorithms
Introduces logic, algorithms, counting, and probabilities in computer science, emphasizing problem-solving techniques.
Advanced Counting: Logic, Structures, and Algorithms
Explores advanced counting, logic, structures, algorithms, and probabilities in solving linear homogeneous recurrence relations.
Engineering Projects Overview
Provides an overview of engineering projects, troubleshooting tips, and practical demonstrations on signal processing and Arduino integration.
Show more
Related publications (8)

A Decision Procedure for Regular Membership and Length Constraints over Unbounded Strings

Andrew Joseph Reynolds

We prove that the quantifier-free fragment of the theory of character strings with regular language membership constraints and linear integer constraints over string lengths is decidable. We do that by describing a sound, complete and terminating tableaux ...
Springer-Verlag Berlin2015

What is the color of chocolate? - extracting color values of semantic expressions

Sabine Süsstrunk, Albrecht Johannes Lindner

We present a statistical framework to automatically determine an associated color for a given arbitrary semantic expression. The expression can not only be a color name but any word or character string. In addition to the color value, we are also able to c ...
2012
Show more
Related concepts (6)
Null character
The null character (also null terminator) is a control character with the value zero. It is present in many character sets, including those defined by the Baudot and ITA2 codes, ISO/IEC 646 (or ASCII), the C0 control code, the Universal Coded Character Set (or Unicode), and EBCDIC. It is available in nearly all mainstream programming languages. It is often abbreviated as NUL (or NULL, though in some contexts that term is used for the null pointer). In 8-bit codes, it is known as a null byte.
Printf
The printf family of functions in the C programming language are a set of functions that take a format string as input among a variable sized list of other values and produce as output a string that corresponds to the format specifier and given input values. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a character, indicate the location and method to translate a piece of data (such as a number) to characters.
String (computer science)
In computer programming, a string is traditionally a sequence of characters, either as a literal constant or as some kind of variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed (after creation). A string is generally considered as a data type and is often implemented as an array data structure of bytes (or words) that stores a sequence of elements, typically characters, using some character encoding. String may also denote more general arrays or other sequence (or list) data types and structures.
Show more