Concept

Li-Fi

Summary
Li-Fi (also written as LiFi) is a wireless communication technology which utilizes light to transmit data and position between devices. The term was first introduced by Harald Haas during a 2011 TEDGlobal talk in Edinburgh. Li-Fi is a light communication system that is capable of transmitting data at high speeds over the visible light, ultraviolet, and infrared spectrums. In its present state, only LED lamps can be used for the transmission of data in visible light. In terms of its end user, the technology is similar to Wi-Fi — the key technical difference being that Wi-Fi uses radio frequency to induce an electric tension in an antenna to transmit data, whereas Li-Fi uses the modulation of light intensity to transmit data. Li-Fi is able to function in areas otherwise susceptible to electromagnetic interference (e.g. aircraft cabins, hospitals, or the military). Li-Fi is a derivative of optical wireless communications (OWC) technology, which uses light from light-emitting diodes (LEDs) as a medium to deliver network, mobile, high-speed communication in a similar manner to Wi-Fi. The Li-Fi market was projected to have a compound annual growth rate of 82% from 2013 to 2018 and to be worth over $6 billion per year by 2018. However, the market has not developed as such and Li-Fi remains with a niche market. Visible light communications (VLC) works by switching the current to the LEDs off and on at a very high speed, beyond the human eye's ability to notice. Technologies that allow roaming between various Li-Fi cells, also known as handover, may allow to seamlessly transition between Li-Fi. The light waves cannot penetrate walls which translates to a much shorter range, and a lower hacking potential, relative to Wi-Fi. Direct line of sight is not always necessary for Li-Fi to transmit a signal and light reflected off walls can achieve 70 Mbit/s. Li-Fi can potentially be useful in electromagnetic sensitive areas without causing electromagnetic interference.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.