Variable renewable energy (VRE) or intermittent renewable energy sources (IRES) are renewable energy sources that are not dispatchable due to their fluctuating nature, such as wind power and solar power, as opposed to controllable renewable energy sources, such as dammed hydroelectricity or biomass, or relatively constant sources, such as geothermal power.
The use of small amounts of intermittent power has little effect on grid operations. Using larger amounts of intermittent power may require upgrades or even a redesign of the grid infrastructure. Options to absorb large shares of variable energy into the grid include using storage, improved interconnection between different variable sources to smooth out supply, using dispatchable energy sources such as hydroelectricity and having overcapacity, so that sufficient energy is produced even when weather is less favourable. More connections between the energy sector and the building, transport and industrial sectors may also help.
The penetration of intermittent renewables in most power grids is low: global electricity generation in 2021 was 7% wind and 4% solar. However, in 2021 Denmark, Luxembourg and Uruguay generated over 40% of their electricity from wind and solar. Characteristics of variable renewables include their unpredictability, variability, and low running costs. These provide a challenge to grid operators, who must make sure supply and demand are matched. Solutions include energy storage, demand response, availability of overcapacity and sector coupling. Smaller isolated grids may be less tolerant to high levels of penetration.
Matching power demand to supply is not a problem specific to intermittent power sources. Existing power grids already contain elements of uncertainty including sudden and large changes in demand and unforeseen power plant failures. Though power grids are already designed to have some capacity in excess of projected peak demand to deal with these problems, significant upgrades may be required to accommodate large amounts of intermittent power.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A gas-fired power plant (sometimes referred to as "gas-fired power station" or "natural gas power plant") is a thermal power station that burns natural gas to generate electricity. Gas-fired power plants generate almost a quarter of world electricity and are significant sources of greenhouse gas emissions. However, they can provide seasonal, dispatchable energy generation to compensate for variable renewable energy deficits, where hydropower or interconnectors are not available.
The levelized cost of electricity (LCOE) is a measure of the average net present cost of electricity generation for a generator over its lifetime. It is used for investment planning and to compare different methods of electricity generation on a consistent basis. The more general term levelized cost of energy may include the costs of either electricity or heat. The latter is also referred to as levelized cost of heat or levelized cost of heating (LCOH), or levelized cost of thermal energy.
Peaking power plants, also known as peaker plants, and occasionally just "peakers", are power plants that generally run only when there is a high demand, known as peak demand, for electricity. Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.
This course presents an overview of (i) the current energy system and uses (ii) the main principles of conventional and renewable energy technologies and (iii) the most important parameters that defin
The course is an introduction to the energy conversion. It focusses
on the thermodynamics of the engines and systems for the conversion of energy from fossil fuels and renewable resources. The relevan
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
Discusses electricity production, consumption, trade, and structures in various countries.
Explores cyclic alkanes' conformations, radical chlorination, and functionalization, emphasizing their importance in organic chemistry.
Discusses biodiversity loss, air pollution costs, sustainability goals, and climate crisis mitigation strategies.
, , ,
The aluminium sector relies on natural gas for the conversion of recycled scrap into new feedstock, which results in substantial atmospheric emissions. Hydric resources are also impacted, as they serve as heat sinks for the waste heat generated during the ...
The number of transient operations in hydraulic machinery connected to power grid, notably start-ups and shut-downs, has observed a substantial increase in recent decades, primarily driven by the global shift toward intermittent renewable energy sources. S ...
2024
, , ,
Edible robots and robotic food — edible systems that perceive, process and act upon stimulation — could open a new range of opportunities in health care, environmental management and the promotion of healthier eating habits. For example, they could enable ...