Summary
In mathematics, a local system (or a system of local coefficients) on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. The category of perverse sheaves on a manifold is equivalent to the category of local systems on the manifold. Let X be a topological space. A local system (of abelian groups/modules/...) on X is a locally constant sheaf (of abelian groups/modules...) on X. In other words, a sheaf is a local system if every point has an open neighborhood such that the restricted sheaf is isomorphic to the sheafification of some constant presheaf. If X is path-connected, a local system of abelian groups has the same stalk L at every point. There is a bijective correspondence between local systems on X and group homomorphisms and similarly for local systems of modules. The map giving the local system is called the monodromy representation of . This shows that (for X path-connected) a local system is precisely a sheaf whose pullback to the universal cover of X is a constant sheaf. This correspondence can be upgraded to an equivalence of categories between the category of local systems of abelian groups on X and the category of abelian groups endowed with an action of (equivalently, -modules). A stronger nonequivalent definition that works for non-connected X is: the following: a local system is a covariant functor from the fundamental groupoid of to the category of modules over a commutative ring , where typically . This is equivalently the data of an assignment to every point a module along with a group representation such that the various are compatible with change of basepoint and the induced map on fundamental groups. Constant sheaves such as . This is a useful tool for computing cohomology since in good situations, there is an isomorphism between sheaf cohomology and singular cohomology: Let .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (2)
Acyclic Models: Cup Product and Cohomology
Covers the cup product on cohomology, acyclic models, and the universal coefficient theorem.
Algebraic Kunneth Theorem
Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.
Related publications (7)

Gluing Non-unique Navier-Stokes Solutions

Maria Colombo

We construct non-unique Leray solutions of the forced Navier-Stokes equations in bounded domains via gluing methods. This demonstrates a certain locality and robustness of the non-uniqueness discovered by the authors in [1]. ...
London2023

Persistence and the Sheaf-Function Correspondence

Nicolas Michel Berkouk

The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
Cambridge2023

Generalized Mullineux Involution And Perverse Equivalences

Thomas Gerber

We define a generalization of the Mullineux involution on multipartitions using the theory of crystals for higher-level Fock spaces. Our generalized Mullineux involution turns up in representation theory via two important derived functors on cyclotomic Che ...
2020
Show more
Related concepts (2)
Intersection homology
In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years. Intersection cohomology was used to prove the Kazhdan–Lusztig conjectures and the Riemann–Hilbert correspondence. It is closely related to L2 cohomology.
Sheaf (mathematics)
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).